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Abstract

For a recollement of derived module categories of rings, we provide sufficient conditions to guarantee
the additivity formula of higher algebraic K-groups of the rings involved, and establish a long Mayer-
Vietoris exact sequence of higher algebraic K-groups for homological exact contexts introduced in the
first paper of this series. Our results are then applied to recollements induced from homological ring
epimorphisms and noncommutative localizations. Consequently, we get an infinitely long Mayer-Vietoris
exact sequence of K-theory for Milnor squares, re-obtain a result of Karoubi (Corollary 5.6) on localiza-
tions and a result on generalized free products pioneered by Waldhausen and developed by Neeman and
Ranicki. In particular, we describe algebraic K-groups of the free product of two groups over a regular
coherent ring as the ones of the noncommutative tensor product of an exact context. This yields a new
description of algebraic K-theory of infinite dihedral group.
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1 Introduction

Algebraic K-theory of rings and algebras in the sense of Quillen (see [26]) collects elaborate invariants
for rings, groups and algebras. One of the most fundamental and important questions in this theory is to
understand and calculate these invariants: algebraic K-groups Kn of rings, which are closely connected with
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Hochschild homologies HHn and with cyclic homologies HC−
n of rings by Chern characters on higher K-

theory (see [31, Chapter 6] for a survey). In computation of higher algebraic K-groups of rings, Quillen,
Suslin and many others have made important contributions in the cases of finite fields, algebraically closed
fields and certain integral domains (see [27] and the references in [31]). For arbitrary rings, however, the
question is too hard, and remains little to be known, though general, abstract algebraic K-theories have been
explosively developed in the last a few decades. In order to understand these algebraic K-groups Kn(R) for
arbitrary rings R, it is reasonable to investigate relationship between these K-groups of different rings which
are linked in certain nice ways.

Along this direction are there some interesting and remarkable investigations in the literature. For ex-
ample, if two rings are derived equivalent, then they have isomorphic Kn-groups by a result of Dugger and
Shipley (see [12]). For a homological noncommutative localization λ : R → S of rings, Neeman and Ranicki
established a long exact sequence of algebraic K-groups of R and S (see [24]). As an application of this result,
Ranicki gave a new interpretation of Waldhausen’s result on algebraic K-theory of generalized free products
from the viewpoint of noncommutative localizations (see [38, 29]). Later, Krause relaxed noncommutative
locations to homological ring epimorphisms with the property that the chain map lifting problem has a pos-
itive answer, and established the same long exact sequence of K-groups (see [19]). Recently, we show in
[8] that, for a homological ring epimorphism λ : R → S, if the left R-module S has a finite-type resolution,
then Kn(R) is the direct sum of Kn(S) and Kn(R) where R is a Waldhausen category determined by λ. This
result is then applied to study algebraic K-groups of endomorphism rings, matrix subrings and rings with
idempotent ideals (see [8] for detail).

Another useful type of natural linkages among rings is recollements of derived module categories, which
were introduced by Beilinson, Bernstein and Deligne in [1] for triangulated categories. Roughly speaking, a
recollement consists of three derived (or triangulated) categories linked by two triangle functors both of which
have left and right adjoint functors. The notion of recollements is an analogue of exact sequences for derived
(or triangulated) categories, which generalizes derived equivalences and is closely related to homological
ring epimorphisms. Here, a natural question is whether and when the additivity formula still holds true for
algebraic K-groups of rings involved in an arbitrary recollement of derived module categories. Namely, we
consider the following question:

Question. Let R, S and T be rings with identity. Suppose that there is a recollement among the derived
module categories D(T ), D(R) and D(S) of the rings T , R and S:

D(S) // D(R) //
ff

xx
D(T )

ff

xx
.

When does the following additivity isomorphism hold true:

Kn(R)' Kn(S)⊕Kn(T ) for each n ∈ N?

where Kn(R) always means the n-th algebraic K-group of the ring R.

This question may trace back to the work of Berrick and Keating on K-theory of the matrix rings of 2
by 2 triangular matrices (see [2]), where they described the Kn-group of a triangular matrix ring as the direct
sum of the ones of rings in the diagonal. Recently, we show in [8] that, if the ideal ReR of a ring R generated
by an idempotent element e has a special finite-type resolution, then the Kn-group of R is the direct sum of
the ones of R/ReR and eRe. In both cases, we do have recollements of derive module categories of rings and
additivity formula of K-groups. However, the isomorphism K0(R)'K0(S)⊕K0(T ) does not have to hold for
arbitrary recollements. This can been seen by an example in [4, Section 8, Remark (2)]. So, answers to the
above question seem to be mysterious.

In this paper we shall apply representation-theoretic methods to investigate the above question in detail
and establish an additivity formula for higher algebraic K-groups of rings involved in recollements with a
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compactness condition. Thus we provide a general answer to the above question. Further, we apply our result
to homological ring epimorphisms, exact contents, extensions and free products of groups.

In dealing with the above-mentioned question, a number of technical obstacles occur: To understand
Kn(R), one has to choose certain models of algebraic K-theory space K(R) of R, up to homotopy equivalence.
For example, the usual favorite models are the category of finitely generated projective R-modules (see [26,
31, 8]), the category of bounded complexes of finitely generated projective R-modules (see [37, 19, 23, 24,
33]), and certain full subcategories of the category of complexes over R with countable direct sums (see
[24, 12]). When comparing algebraic K-theory of different rings, one has first to fix a suitable model to
define K-theory, and then to find exact functors compatible with the chosen model. Unfortunately, given an
arbitrary recollement of derived module categories, nothing is known about the concrete forms of the six
triangle functors. This means that it would be quite difficult to find a suitable model for all three rings in the
recollement such that the given six functors can induce compatible functors on the model for all rings and
connect K-theory space K(R) with K-spaces K(S) and K(T ) in a reasonable way. Hence the methods used
in [8, 24, 23, 19] actually does not work any more for the present case, and therefore some new ideas are
necessary for attacking the above question.

To overcome these obstacles, we pass to differential graded (dg) algebras and introduce a new defini-
tion of algebraic K-theory spaces for dg algebras, which captures the usual definition of algebraic K-theory
spaces of ordinary rings up to homotopy equivalence. Our definition of K-theory spaces is a modification
of Schlichting’s definition in [32], and excludes the potential set-theoretic difficulties in the corresponding
definition given by Dugger and Shipley in [12]. Also, this new definition gives much freedom for choices of
compatible functors among models that define K-theory. Under a compactness assumption, we can identify
K(S) and K(T ) with algebraic K-theory spaces of dg endomorphism algebras S and T of perfect complexes
over R, respectively. After a systematical study on homotopy equivalences of K-theory spaces related to per-
fect dg modules, we establish decomposition formulas for algebraic K-groups of dg algebras. Particularly,
this leads to the following main result in this paper.

Theorem 1.1. Let R, S and T be rings with identity. Suppose that there is a recollement among the derived
module categories D(T ), D(R) and D(S) of the rings T , R and S:

D(S)
i∗ // D(R) //

ff

xx
D(T ).

ff

xx

If i∗(S) is quasi-isomorphic to a bounded complex of finitely generated projective R-modules, that is, i∗(S) is
compact in D(R), then

Kn(R)' Kn(S)⊕Kn(T ) for all n ∈ N.

We remark that, under the compactness condition in Theorem 1.1, it is not difficult to prove that K0(S) is
a direct summand of K0(R). However, the key point here, which seems to be highly non-trivial, is to prove
that an additive complement to Kn(S) is just Kn(T ) for all n ≥ 0. Also, we note that Theorem 1.1 cannot be
extended to dg algebras because derived equivalences of dg algebras do not preserve algebraic K-groups, as
pointed out by an example in [12].

First, we apply Theorem 1.1 to recollements of derived module categories arising from homological ring
epimorphisms.

Recall that a ring epimorphism λ : R → S is said to be homological if TorR
j (S,S) = 0 for all j > 0. An R-

module M has a finite-type resolution provided that there is a finite projective resolution by finitely generated
projective R-modules, that is, there is an exact sequence 0→ Pm → ··· → P1 → P0 →M → 0 for some m ∈N
such that all R-modules Pj are projective and finitely generated.
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Corollary 1.2. Suppose that λ : R → S is a homological ring epimorphism which induces a recollement of
derived module categories of rings T,R,S:

D(S)
i∗ // D(R) //

ff

xx
D(T )

ff

xx

where i∗ is the restriction functor induced from λ. If RS or SR has a finite-type resolution, then

Kn(R)' Kn(S)⊕Kn(T ) for all n ∈ N.

We should note that not every homological ring epimorphisms R→ S can induce a recollement of derived
module categories of rings because the Verdier quotient of D(R) by D(S) may not be realized as the derived
category of a usual ring. This can be seen by the counterexample given by Bernhard Keller to the Telescope
conjecture. Comparing Corollary 1.2 with [8, Theorem 1.1], we see that the conclusion of Corollary 1.2,
under the assumption of existence of a recollement, is quite strong. In fact, by [8, Theorem 1.1], we have
Kn(R) ' Kn(S)⊕Kn(R,λ) for all n ∈ N, where Kn(R,λ) is the n-th algebraic K-group of the category R
mentioned before, while Corollary 1.2 describes Kn(R,λ) explicitly as the Kn-group of a ring T if such a ring
T exists. Moreover, since stratifying ideals give rise to recollements of derived module categories, Corollary
1.2 also generalizes [8, Corollary 1.3].

Next, we consider K-theory of reollements arising from exact contexts introduced in the first paper of
this series (see [6]). This kind of recollements involves noncommutative localizations in ring theory, which
occur often in algebraic topology and representation theory (see [28, 29]).

Let R, S and T be associative rings with identity, and let λ : R→ S and µ : R→ T be ring homomorphisms.
Suppose that M is an S-T -bimodule together with an element m ∈ M. The quadruple (λ,µ,M,m) is called an
exact context if the following sequence

0 −→ R
(λ,µ)−→ S⊕T

( ·m
−m ·)−→ M −→ 0

is an exact sequence of abelian groups, where ·m and m· denote the right and left multiplication by m maps,
respectively. An exact context (λ,µ,M,m) is called an exact pair if M = S⊗R T and m = 1⊗ 1. In this
case we simply say that (λ,µ) is an exact pair. The exact context (λ,µ,M,m) is said to be homological if
TorR

i (T,S) = 0 for all i ≥ 1.
For each exact context (λ,µ,M,m), we associate it with a new ring T �R S, called the noncommutative

tensor product of (λ.µ,M,m) in [6, Section 4.1], which is a generalization of the usual tensor products over
commutative rings, and captures coproducts of rings and dual extensions.

For a homological exact context (λ,µ,M,m), we have the following long Mayer-Vietoris sequence which
links algebraic K-groups of the rings R, S, T and T �R S together.

Theorem 1.3. Let (λ,µ,M,m) be a homological exact context. Then the following statements hold true:
(1) There exists a long exact sequence of algebraic K-groups:

· · · −→ Kn+1(T �R S)−→ Kn(R)

(
−Kn(λ),Kn(µ)

)
// Kn(S)⊕Kn(T )

(
Kn(ρ)
Kn(φ)

)
// Kn(T �R S)−→ Kn−1(R)−→

·· · −→ K0(R)−→ K0(S)⊕K0(T )−→ K0(T �R S)

for all n ∈ N.
(2) If the left R-module S or the right R-module T has a finite-type resolution, then Kn(R)⊕Kn(T �R S)'

Kn(S)⊕Kn(T ) for all n ∈ N.

Since a Milnor square of rings provides a typical exact pair (see [6, Example (3), Section3; Corollary
4.3], we have the following long Mayer-Vietoris exact sequence which extends and amplifies the K-theory
sequence in [20].
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Corollary 1.4. Given a pullback square of rings and surjective homomorphisms

R

i2
��

i1 // R1

j1
��

R2
j2 // R′,

if TorR
j (R2,R1) = 0 for all j > 0, then there is a long Mayer-Vietoris exact sequence:

· · · −→ Kn+1(R′)−→ Kn(R)−→ Kn(R1)⊕Kn(R2)−→ Kn(R′)−→ Kn−1(R)−→

·· · −→ K0(R)−→ K0(R1)⊕K0(R2)−→ K0(R′)

for all n ∈ N.

As another consequence of Theorem 1.3, we obtain the following result on ring extensions.

Corollary 1.5. Suppose that R⊆ S is an extension of rings, that is, R is a subring of the ring S with the same
identity. Let S′ be the endomorphism ring of the left R-module S/R. If the left R-module S is projective and
finitely generated, then

Kn(R)⊕Kn(S′�R S)' Kn(S)⊕Kn(S′) for all n ∈ N,

where S′�R S is the noncommutative tensor product of an exact context defined by the extension.

A rather striking application of Theorem 1.3 is that algebraic K-groups of the free products of finite
groups can be characterized by noncommutative tensor products which have finite ranks over ground rings,
while the group rings of free products usually have infinite ranks.

Let H and G be two groups, and let RH and RG be the group rings of H and G over a ring R, respectively.
Then the canonical maps from R to RH and RG can be completed into an exact context (see Section 5.2 for
details) and the associated noncommutative tensor product RH �R RG can be described explicitly as follows:

As an abelian group, RH �R RG coincides with the group ring R(H ×G) of the direct product H ×G
over R. Thus RH �R RG is a finitely generated free R-module if G and H are finite. As an associative ring, it
admits the following multiplication:

r(h,g) = (h,g)r and (h,g)(h′,g′) = (h,gg′)+(hh′,g′)− (h,g′),

where r ∈ R, h,h′ ∈ H and g,g′ ∈ G,

Recall that the free product of H and G, denoted by H ∗G, is the coproduct of H and G in the category
of groups. In general, the free product of finite groups may be infinite. For example, the free product of two
cyclic groups of order 2 is the infinite dihedral group D∞.

We say that a ring R is regular coherent if any finitely presented left R-module has a finite-type resolution.
A typical example of regular coherent rings is the ring of integers.

The following corollary follows from Theorem 1.3 together with [38, Theorems 1 and 4], which reduces
surprisingly K-theory of group rings of infinite R-rank to the one of rings of finite R-rank.

Corollary 1.6. Let R be a regular coherent ring and let H and G be two groups. Then

Kn
(
R(H ∗G)

)
' Kn

(
RH �R RG

)
' Kn

(
RG�R RH

)
for all n ≥ 1.

5



As a consequence of our methods, we get a new description of algebraic K-theory for infinite dihedral
group D∞: For an arbitrary ring R, Kn

(
R(D∞)

)
' Kn(RZ2 �R RZ2)⊕ Ñiln−1(R) for n ≥ 1, where Ñiln(R) is

the n-th reduced Nilgroup of R. This decomposition is different from the result in [11].

This paper is organized as follows: In Section 2, we briefly recall some definitions and basic facts on
triangulated categories, recollements and homological ring epimorphisms. In Section 3, we first recall the
algebraic K-theories developed by Waldhausen for Waldhausen categories and Schlichting for Frobenius
pairs, and then mention several fundamental theorems in algebraic K-theory of Frobenius pairs. In Section
4, we first introduce our definition of algebraic K-theory spaces for differential graded algebras, and then
discuss homotopy equivalences of K-theory spaces constructed from perfect dg modules in detail. As a
result, we establish a reduction in Proposition 4.14 for calculation of algebraic K-groups of dg algebras. At
the end of this section, we prove Theorem 1.1 as well as Corollary 1.2. In Section 5, we apply our results to
homological exact contexts, and prove Theorem 1.3 and Corollaries 1.4, 1.5 and 1.6.

In the third paper of this series, we shall discuss finitistic dimension theory for recollements of derived
module categories of rings (see [7]).

2 Preliminaries

In this section, we shall fix notation employed throughout the paper, and provide some basic facts for later
proofs.

2.1 General terminology and notation on categories

Let C be an additive category.
We always assume that a full subcategory B of C is closed under isomorphisms, that is, if X ∈ B and

Y ∈ C with Y ' X , then Y ∈ B .
Given two morphisms f : X →Y and g : Y → Z in C , we denote the composite of f and g by f g which is

a morphism from X to Z, while given two functors F : C → D and G : D → E among three categories C , D
and E , we denote the composite of F and G by GF which is a functor from C to E .

Let Ker(F) and Im(F) be the kernel and image of the functor F , respectively. That is, Ker(F) := {X ∈
C | FX ' 0} and Im(F) := {Y ∈ D | ∃X ∈ C ,FX ' Y}. In particular, Ker(F) and Im(F) are closed under
isomorphisms in C and D , respectively.

An additive functor F : A → B between two additive categories A and B is called an equivalence up to
factors if F is fully faithful and each object of B is isomorphic to a direct summand of the image of an object
of A under F .

Let A be a triangulated category and X a full triangulated subcategory of A . Then, due essentially to
Verdier, there exists a triangulated category A/X , and a triangle functor q : A →A/X with X ⊆Ker(q) such
that q has the following universal property: If q′ : A → T is a triangle functor with X ⊆ Ker(q′), then q′

factorizes uniquely through A q−→ A/X by [22, Theorem 2.18]. The category A/X is called the Verdier
quotient of A by X , and the functor q is called the Verdier localization functor. In this case, Ker(q) is the
full subcategory of A consisting of direct summands of all objects in X (see [22, Chapter 2] for details). We
remark that the objects of the category A/X are the same as the objects of A .

A sequence A F−→ B G−→ C of triangle functors F and G between triangulated categories is said to be
exact if the following four conditions are satisfied:

(i) The functor F is fully faithful.
(ii) The composite GF : A → C of F and G is zero.
(iii) The image Im(F) of F is equal to the kernel of G.
(iv) The functor G induces an equivalence from the Verdier quotient of B by Im(F) to C .
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Clearly, if X is closed under direct summands in A , then we have an exact sequence of triangulated
categories:

X � � // A
q // A/X .

Let T be a triangulated category with small coproducts (that is, coproducts indexed over sets exist in T ).
An object U ∈ T is said to be compact if HomT (U,−) commutes with small coproducts in T . The full

subcategory of T consisting of all compact objects is denoted by T c.
For any non-empty class S of objects in T , we denote by Tria(S ) (respectively, thick(S )) the smallest

full triangulated subcategory of T containing S and being closed under small coproducts (respectively, direct
summands). If S consists of a single object U , then we simply write Tria(U) and thick(U) for Tria({U})
and thick({U}), respectively. The notation Tria(S ) without referring to T will not cause any confusions
because this notation can be clarified from the contexts of our considerations.

The following facts are in the literature (see [22, Proposition 1.6.8] and [6, Section 2.1]).

Lemma 2.1. (1) If T0 is a full triangulated subcategory of T such that T0 is closed under countable coprod-
ucts, then T0 is closed under direct summands in T .

(2) Let T ′ be a triangulated category with small coproducts, and let F : T → T ′ be a triangle functor. If
F preserves small coproducts, then F(Tria(U))⊆ Tria(F(U)) for any U ∈ T .

Special examples of triangulated categories are the derived module categories of (associative) rings with
identity, which are of our particular interest in this paper. Now, let us fix some notation for rings.

Let R be a ring with identity. We denote by R-Mod the category of all left R-modules. The complex,
homotopy and derived categories of R-Mod are usually denoted by C (R),K (R) and D(R), respectively. It
is well-known that both K (R) and D(R) are triangulated categories, and that D(R) = Tria(RR). As usual we
write Dc(R) for D(R)c, which is equal to the full subcategory of D(R) consisting all those complexes that
are quasi-isomorphic to bounded complexes of finitely generated projective R-modules.

2.2 Recollements and homological ring epimorphisms

In this subsection, we recall the notion of recollements introduced by Beilinson, Bernstein and Deligne (see
[1]), which is widely used in algebraic geometry and representation theory. Some prominent examples of
recollements can be constructed from certain homological ring epimorphisms.

Let D , D ′ and D ′′ be triangulated categories with shift functors denoted universally by [1].
We say that D is a recollement of D ′ and D ′′ if there are six triangle functors indicated in the following

diagram

D ′′ i∗=i! // D
j!= j∗ //

i!

``

i∗

��
D ′

j∗

__

j!

��

such that:
(1) The 4 pairs (i∗, i∗),(i!, i!),( j!, j!) and ( j∗, j∗) are adjoint pairs of functors.
(2) The 3 functors i∗, j∗ and j! are fully faithful.
(3) The composite of two functors in each row is zero, that is, i! j∗ = 0 (and thus also j!i! = 0 and i∗ j! = 0).
(4) There are 2 canonical triangles in D for each object X ∈ D:

j! j!(X)−→ X −→ i∗i∗(X)−→ j! j!(X)[1], i!i!(X)−→ X −→ j∗ j∗(X)−→ i!i!(X)[1],

where j! j!(X) → X and i!i!(X) → X are counit adjunction maps, and where X → i∗i∗(X) and X → j∗ j∗(X)
are unit adjunction maps.
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It is known that, up to equivalence of categories, recollements of triangulated categories are the same as
torsion torsion-free triples (TTF-triples) of triangulated categories (see, for example, [3] and [4, Section 2.3]
for details). In the following lemma we mention some facts about recollements for later proofs.

Lemma 2.2. Suppose that the above recollement is given. Then the following hold:
(a) The images of the three fully faithful functors j!, i∗ and j∗ are closed under direct summands in D .
(b) The Verdier quotients of D by the images of the triangle functors j! and i∗ are equivalent to D ′′ and

D ′, respectively.
(c) Assume that D , D ′ and D ′′ admit small coproducts. Then both j! and i∗ preserve compact objects.

Suppose further that D is compactly generated, that is, there is a set S of compact objects in D such that
Tria(S) = D , then i∗ preserves compact objects if and only if so is j!. In this case, we can obtain a “half
recollement” of subcategories of compact objects:

(D ′′)c i∗ // Dc j!
//

i∗
yy

(D ′)c

j!
zz

Note that (a) and (b) follow from [3, Chapter I, Proposition 2.6], while (c) follows from [3, Chapter III,
Lemma 1.2 (1) and Chapter IV, Proposition 1.11].

A typical example of recollements occurs in the following two situations.
(1) Recollements of derived module categories.
Let R be a ring with an idempotent ideal I = ReR for e2 = e ∈ R. Suppose that I is a stratifying ideal of R,

that is, the multiplication map Re⊗eRe eR → ReR is an isomorphism and ToreRe
j (Re,eR) = 0 for j ≥ 1, then

there is a recollement of derived module categories:

D(R/I)
D(π∗) // D(R)

eR⊗L
R−//

RHomR(R/I,−)

ee

(R/I)⊗L
R−

~~
D(eRe)

Re⊗L
eRe−

~~

RHomeRe(eR,−)

ee

where D(π∗) is the restriction functor induced from the canonical surjection π : R→ R/I, and where Re⊗L
eRe

− is the total left-derived functor of Re⊗eRe − and RHomeRe(eR,−) is the total right-derived functor of
HomeRe(eR,−). For more details, we refer the reader to [10].

In Section 5 and [4, 9, 6] one may find more examples of recollements of derived module categories,
which have not to be induced from idempotent elements.

(2) Recollements of triangulated categories induced from ring epimorphisms.
Recall that a ring epimorphism λ : R → S is said to be homological if TorR

n (S,S) = 0 for all n > 0 (see
[13, 24]). This is also equivalent to that the restriction functor D(λ∗) : D(S)→D(R) is fully faithful.

According to [25, Section 4], for an arbitrary homological ring epimorphism, we obtain the following
recollement of triangulated categories, of which the right-hand term is not necessarily the derived category
of an ordinary ring.

Lemma 2.3. Let λ : R → S be a homological ring epimorphism. Then there is a recollement of triangulated
categories:

D(S)
i∗ // D(R)

j!
//

ff

i∗
xx

Tria(RQ•)
gg

j!
ww

where Q• is the two-term complex 0→ R λ−→ S→ 0 with R and S in degrees 0 and 1, respectively, and where
j! is the canonical embedding and j! = Q•⊗L

R −, i∗ = S⊗L
R −, i∗ = D(λ∗).
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Thus, if we define Y := {Y ∈D(R) | HomD(R)(X ,Y ) = 0 for any X ∈ Tria(RQ•)}, then it follows from
Lemma 2.3 that

Y = {Y ∈D(R) | HomD(R)(Q
•,Y [n]) = 0 for n ∈ Z}= {Y ∈D(R) | Q•⊗L

R Y = 0},

and that i∗ induces an equivalence D(S) '−→ Y .

Finally, we point out that if a homological ring epimorphism induces a recollement of derived module
categories of rings, then it also gives a recollement of derived module categories of opposite rings, though
the categories D(R) and D(R

op
) for a ring R may not be triangle equivalent. This fact will be used in the

proof of Corollary 1.2.

Lemma 2.4. Let λ : R→ S be a homological ring epimorphism. Then the following are equivalent for a ring
T :

(1) There is a recollement of derived categories:

D(S)
D(λ∗) // D(R) //

ff

xx
D(T )

ff

xx

(2) There is a recollement of derived categories:

D(Sop)
D(λ∗) // D(Rop) //

gg

ww
D(T op)

gg

ww

Proof. Observe that if λ : R → S is a homological ring epimorphism, then so is the map λ : Rop → Sop

by [13, Theorem 4.4]. Moreover, it follows from [25, Corollary 3.4] that (1) holds if and only if there is a
complex P• ∈C b(R-proj) such that Tria(P•) = Tria(RQ•), EndD(R)(P•)' T and HomD(R)(P•,P•[n]) = 0 for
any n 6= 0, where Q• is the complex 0 → R → S → 0. However, for such a complex P•, we always have

HomD(Rop)(P
•∗,P•∗[n])' HomD(R)(P

•,P•[n]) for all n ∈ Z,

where P•∗ := HomR(P•,R)∈C b(Rop-proj). So, to prove that (1) and (2) are equivalent, it is enough to prove
the following statement:

If P• ∈ C b(R-proj) such that Tria(P•) = Tria(RQ•), then Tria(P•∗) = Tria(Q•
R).

In fact, let P• be such a complex and define

Y ′ := {Y ∈D(Rop) | HomD(Rop)(X ,Y ) = 0 for X ∈ Tria(P•∗)}.

Since P• ∈ C b(R-proj), we have P•∗ ∈ C b(Rop-proj). It follows from [4, Lemma 2.8] that there is a recolle-
ment:

Y ′ µ // D(Rop) //
ee

yy
Tria(P•∗)

gg

ww

where µ is the inclusion. This implies that

(a) Tria(P•∗) = {X ∈D(Rop) | HomD(Rop)(X ,Y ) = 0 for Y ∈ Y ′}.

Furthermore, we remark that

Y ′ = {Y ∈D(Rop) | HomD(Rop)(P
•∗,Y [n]) = 0 for n ∈ Z}= {Y ∈D(Rop) | RHomRop(P•∗,Y ) = 0},

and that
RHomRop(P•∗,−)'−⊗L

R P• : D(Rop)−→D(Z)

9



by [6, Section 2.1]. Thus Y ′ = {Y ∈ D(Rop) | Y ⊗L
R P• = 0}. However, by Lemma 2.1 (2), for a given

Y ∈D(Rop), the left-derived tensor functor Y ⊗L
R − : D(R)→D(Z) sends Tria(Q•) (respectively, Tria(RP•))

to zero if and only if Y ⊗L
R Q• = 0 (respectively, Y ⊗L

R P• = 0). Since Tria(P•) = Tria(RQ•) by assumption,
we certainly obtain Y ′ = {Y ∈D(Rop) | Y ⊗L

R Q• = 0}.
Since λ : Rop → Sop is a homological ring epimorphism, we obtain another recollement by Lemma 2.3:

D(Sop)
D(λ∗) // D(Rop) G //

gg

ww
Tria(Q•

R)
gg

F
ww

where F is the inclusion and G is the tensor functor −⊗L
R Q•. This implies that Im

(
D(λ∗)

)
= Ker(G) and

(b) Tria(Q•
R) = {X ∈D(Rop) | HomD(Rop)(X ,Y ) = 0 for Y ∈ Ker(G)}.

Since Y ′ = Ker(G), we conclude from (a) and (b) that Tria(P•∗) = Tria(Q•
R). This finishes the proof of

Lemma 2.4. �

3 Algebraic K-theory

In this section, first, we briefly recall some basics on algebraic K-theory of Waldhausen categories and Frobe-
nius pairs developed in [37] and [32], respectively. And then we discuss algebraic K-theory of differential
graded algebras and prove a few facts as preparations for proofs of the main results.

3.1 K-theory spaces of small Waldhausen categories

Let us first recall some elementary notion and facts about K-theory of small Waldhausen categories (see
[37, 36, 26]).

Let C be a small Waldhausen category, that is, a pointed category (equipped with a zero object) with
cofibrations and weak equivalences. In [37, Section 1.3], Waldhausen has defined a K-theory space K(C )
for C , which is a pointed topological space, and an n-th homotopy group Kn(C ) of K(C ) for each n ∈ N,
which is called the n-th K-group of C . Clearly, if a Waldhausen category C ′ is essentially small, that is, the
isomorphism classes of objects of C ′ form a set, then the definition of Waldhausen K-theory still makes sense
for C ′ because, in this case, one can choose a small Waldhausen subcategory C of C ′ such that C is equivalent
to C ′, and define the K-theory of C ′ through that of C .

Note that K(C ) is always homotopy equivalent to a CW-complex. In fact, this follows from the following
observation: The classifying space of a small category has the structure of a connected CW-complex and the
loop space of a CW-complex is homotopy equivalent to a CW-complex (see [21]), while K(C ) is the loop
space of the classifying space constructed from C .

The K-theory space defined by Waldhausen is natural in the following sense: Each exact functor F : C →
D between Waldhausen categories C and D induces a continuous map K(F) : K(C ) → K(D) of (pointed)
topological spaces, and a homomorphism Kn(F) : Kn(C ) → Kn(D) of abelian groups for each n ∈ N. If G :
D → E is another exact functor between Waldhausen categories, then K(GF) = K(F)K(G) in our notation.

Note that the associated point eC of K(C ) corresponds to the image of the map K({0})→ K(C ) induced
from the inclusion {0} ↪→ C , where 0 denotes the zero object of C .

Finally, we recall some definitions and basic facts in homotopy theory for later proofs. For more details,
we refer the reader to [40, Chapters III and IV] and [34, Chapter 7]. Those readers who are familiar with
homotopy theory may skip the rest of this subsection.

Let g : Y → Z be a continuous map of topological spaces. We say that g is a homotopy equivalence if
there is a continuous map h : Z → Y such that gh : Y → Y and hg : Z → Z are homotopic to the identities of
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Y and Z, respectively. If there is a homotopy equivalence between Y and Z, then we say that Y and Z are
homotopy equivalent, and simply write Y ∼−→ Z.

Assume that Y and Z are pointed topological spaces with the base-points y0 and z0, respectively, and
that the map g : Y → Z sends y0 to z0. The homotopy fibre F(g) of g is defined to be the following pointed
topological space

F(g) := {(ω,y) | ω : [0,1]→ Z, y ∈ Y, (0)ω = z0, (1)ω = (y)g}

with the base-point
(
cz0 ,y0

)
, where cz0 is the constant path t 7→ z0 for t ∈ [0,1]. Note that homotopy fibres

are well defined up to homotopy equivalences.
The homotopy fibre of the map {z0} ↪→ Z is called the loop space of (Z,z0), and denoted by Ω(Z,z0).

Note that we can identify Ω(Z,z0) with the set {ω : [0,1] → Z | (0)ω = z0 = (1)ω}, and that there is a
canonical map

∂ : Ω(Z,z0)−→ F(g), ω 7→ (ω,y0) for ω ∈ Ω(Z,z0).

Let πn(Z,z0) denote the n-th homotopy group of (Z,z0) for each n ∈ N. Then πn
(
Ω(Z,z0)

)
= πn+1(Z,z0).

Further, we define h : F(g)→ Y by (ω,y) 7→ y for any (ω,y) ∈ F(g). Then the sequence

Ω(Z,z0)
∂−→ F(g) h−→ (Y,y0)

g−→ (Z,z0)

gives rise to a long exact sequence of homotopy groups:

· · · −→ πn+1(Z,z0)
πn(∂)−→ πn

(
F(g),(cz0 ,y0)

) πn(h)−→ πn(Y,y0)
πn(g)−→ πn(Z,z0)−→ πn−1

(
F(g),(cz0 ,y0)

)
−→

·· · −→ π0
(
F(g),(cz0 ,y0)

)
−→ π0(Y,y0)−→ π0(Z,z0).

For a proof, we refer the reader to [40, Corollary IV. 8.9].

A sequence (X ,x0)
f−→ (Y,y0)

g−→ (Z,z0) of pointed topological spaces is called a homotopy fibration if
the composite of f and g is equal to the constant map which sends every x in X to the base-point of Z, and if
the natural map

X −→ F(g), x 7→
(
cz0 ,(x) f

)
for x ∈ X

is a homotopy equivalence. In this case, the loop space Ω(Z,z0) is homotopy equivalent to the homotopy
fibre of f .

The sequence (X ,x0)
f−→ (Y,y0)

g−→ (Z,z0) of pointed topological spaces is called a weak homotopy
fibration if there is a pointed topological space (Z′,z′0), and two pointed maps g1 : Y → Z′ and g2 : Z′ → Z
with g = g1g2 such that

(1) the sequence (X ,x0)
f−→ (Y,y0)

g1−→ (Z′,z′0) is a homotopy fibration, and that
(2) g2 induces an injection π0(Z′,z′0)→ π0(Z,z0) and a bijection πn(Z′,z′0)→ πn(Z,z0) for n > 0.

Assume that (X ,x0)
f−→ (Y,y0)

g−→ (Z,z0) is a weak homotopy fibration. Then there is a long exact
sequence of homotopy groups:

· · · −→ πn+1(Z,z0)−→ πn(X ,x0)
πn( f )−→ πn(Y,y0)

πn(g)−→ πn(Z,z0)−→ πn−1(X ,x0)−→

·· · −→ π0(X ,x0)−→ π0(Y,y0)−→ π0(Z,z0)

for all n ∈ N, and g2 induces a homotopy equivalence Ω(g2) : Ω(Z′,z′0)
∼−→ Ω(Z,z0). Thus Ω(Z,z0) is

homotopy equivalent to the homotopy fibre of f .
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3.2 Frobenius pairs and their K-theory spaces

We recall some definitions given in [32].
By a Frobenius category we mean an exact category (see [26, 17]) with enough projective and injective

objects such that projectives and injectives coincide. A map between two Frobenius categories is an exact
functor which preserves projective objects.

Let C be a Frobenius category.
We denote by C -proj the full subcategory of C consisting of all projective objects. It is well known that the

factor category C of C modulo C -proj, called the stable category of C , is a triangulated category. Moreover,
two objects X and Y of C are isomorphic in C if and only if X ⊕P ' Y ⊕Q in C for some P,Q ∈ C -proj. In
particular, X ' 0 in C if and only if X ∈ C -proj.

A subcategory X of C is called a Frobenius subcategory of C if X is a Frobenius category and the
inclusion X ⊆C is a fully faithful map of Frobenius categories. In this case, X -proj⊆C -proj, and a morphism
in X factorizes through X -proj if and only if it factorizes through C -proj. This implies that the inclusion
X ⊆ C induces a fully faithful inclusion X ⊆ C of triangulated categories. In general, X does not have to be
a triangulated subcategory of C since X is not necessarily closed under isomorphisms in C . However, by our
convention, the image of the inclusion X ⊆ C is indeed a triangulated subcategory of C .

A pair C := (C ,C0) of Frobenius categories is called a Frobenius pair if C is a small category and C0 is
a Frobenius subcategory of C . A map from a Frobenius pair (C ,C0) to another Frobenius pair (C ′,C ′

0) is a
map of Frobenius categories C → C ′ such that it restricts to a map from C0 to C ′

0 (see [32, Section 4.3]).
Let C := (C ,C0) be a Frobenius pair. Then the image of the inclusion C0 ⊆C is a triangulated subcategory

of C . So we can form the Verdier quotient of C by this image, denoted by

DF(C) := C /C0

which is called the derived category of the Frobenius pair C. Here, we use the same notation C /C0 as in [32]
to denote the derived category of C, but the meaning of C /C0 in our paper is slightly different from the one in
[32] because we require that the image of an inclusion functor is closed under isomorphisms. Nevertheless,
all results in [32] work with this modified definition of derived categories.

Clearly, if C0 = C -proj, then DF(C) = C . In this case, we shall often write C for the Frobenius pair
(C ,C -proj).

The category C of a Frobenius pair C := (C ,C0) can be regarded as a small Waldhausen category (for
definition, see [37] or [8]): The inflations in C form the cofibrations of C , and the morphisms in C which are
isomorphisms in DF(C) form the weak equivalences of C . In this note, we shall write C for the Waldhausen
category C to emphasize the role of C0. According to our foregoing notation, we denote by C the Waldhausen
category defined by the Frobenius pair (C ,C -proj). For the Waldhausen category C, we denote the K-theory
space of C in the sense of Waldhausen by K(C) which is a pointed topological space, and the n-th K-group
of K(C) by Kn(C) for each n ∈ N.

It is known that K0(C) is naturally isomorphic to the Grothendieck group K0(DF(C)) of the small tri-
angulated category DF(C) (see [36, Section 1.5.6], [39, Chapter IV, Proposition 8.4] and [33, Proposition
3.2.22]).

Let G : C→C ′ be a map of Frobenius pairs. On the one hand, G automatically induces a triangle functor
DF(G) : DF(C) → DF(C ′), which sends X ∈ C to G(X) ∈ C ′. On the other hand, G : C → C ′ is an exact
functor of associated Waldhausen categories, which induces a continuous map K(G) : K(C)→ K(C ′).

In this paper, we assume that all Waldhausen categories considered arise from Frobenious pairs. Two
typical examples of Frobenius pairs are of our particular interest.

(a) The first typical example of Frobenius pairs is provided by the categories of bounded complexes over
exact categories.

Let E be a small exact category (for definition, see [26] and [17]). We denote by C b(E ) the category of
bounded chain complexes over E . Then C b(E ) is a small, exact category with degreewise split conflations,
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that is, a sequence X• → Y • → Z• is a conflation in C b(E ) if X i → Y i → Zi is isomorphic to the split
conflation X i →X i⊕Zi → Zi for each i∈Z. Actually, C b(E ) is even a Frobenius category in which projective
objects are exactly bounded contractible chain complexes over E . Recall that a chain complex X• is called
contractible when the identity on X• is null-homotopic. Moreover, the stable category of C b(E ) is the usual
bounded homotopy category K b(E ), that is, DF(C b(E )) = K b(E ).

Recall that a complex X• = (X i,di)i∈Z over E is called acyclic if di is a composite of a deflation πi

with an inflation λi such that (λi,πi+1) is a conflation for all i. Let C b
ac(E )⊆ C b(E ) be the full subcategory

of objects which are homotopy equivalent to acyclic chain complexes over E . Then C b
ac(E ) contains all

projective objects of the Frobenius category C b(E ), and is closed under extensions, kernels of deflations as
well as cokernels of inflations in C b(E ). Thus C b

ac(E ) inherits a Frobenius structure from C b(E ) and

C :=
(
C b(E ),C b

ac(E )
)

is a Frobenius pair. In particular, the pair C (or the associated category C b(E )) can be regarded as a Wald-
hausen category: A chain map f • : X•→Y • in C b(E ) is called a cofibration if f i : X i →Y i is a split inflation
in E for each i ∈ Z; a weak equivalence if the mapping cone of f • belongs to C b

ac(E ). Moreover, DF(C)
coincides with the bounded derived category Db(E ) of C b(E ), which is defined as follows:

Let E ′ be an arbitrary exact category. The objects of Db(E ′) are the objects of C b(E ′). The morphisms
of Db(E ′) are obtained from the chain maps by formally inverting the maps whose mapping cones are acyclic
(as complexes of objects in E ′). For example, if E ′ is the usual exact category R-Mod with R a ring, then
Db(E ′) is the usual derived category Db(R). For more details, see [17].

Assume that the exact structure of E is induced from an abelian category A . That is, E ⊆ A is a full

subcategory such that it is closed under extensions, and that a sequence X
f−→Y

g−→ Z with all terms in E is a

conflation in E if and only if 0→ X
f−→Y

g−→ Z → 0 is an exact sequence in A . Furthermore, assume that E
is closed under kernels of epimorphisms in the abelian category. In this case, the chain map f • : X•→Y • is a
weak equivalence in C if and only if f • is a quasi-isomorphism in C (A ), that is, H i( f •) : H i(X•)→ H i(Y •)
is an isomorphism in A for each i ∈ Z.

Note that an exact category E itself can also be understood as a Waldhausen category with cofibrations
being inflations, and weak equivalences being isomorphisms. Up to now, there are at least three algebraic
K-theory spaces associated with a small exact category E : The Quillen K-theory space of the exact category
E , the Waldhausen K-theory space with respect to the Waldhausen category E , and the Waldhausen K-theory
space of the Waldhausen category defined by the Frobenius pair

(
C b(E ),C b

ac(E )
)
. However, these spaces

are the same up to homotopy equivalence (see [37, Section 1.9]) and [36, Theorem 1.11.7]). So, in this paper,
we always identify these spaces.

(b) The next example of Frobenius pairs is constructed from categories of finitely generated projective
modules.

Let R be a ring. Then the category R-proj of finitely generated projective R-modules is a small exact
category with split, short exact sequences as its conflations. Clearly, this exact structure on R-proj is induced
from the usual exact structure of the abelian category R-Mod. Following Quillen [26], the algebraic K-theory
space K(R) of R is defined to be the space K(R-proj) of R-proj, and the n-th algebraic K-group Kn(R) of R
to be the n-th homotopy group of K(R).

We know from (a) that the pair
(
C b(R-proj),C b

ac(R-proj)
)

is a Frobenius pair. In this way, C b(R-proj)
can be regarded as a small Waldhausen category. Moreover, C b

ac(R-proj) consists of all bounded contractible
chain complexes over R-proj, which are exactly projective objects in the Frobenius category C b(R-proj).
In other words, we have C b(R-proj)-proj = C b

ac(R-proj). Thus DF(C b(R-proj)) is the bounded homotopy
category K b(R-proj). Since each compact object of D(R) is quasi-isomorphic to an object of C b(R-proj),
the Verdier localization functor K (R)→D(R) restricts to a triangle equivalence K b(R-proj) '−→Dc(R).

Hence, we see that K(R), K(C b(R-proj)) and K(C) with C :=
(
C b(R-proj),C b

ac(R-proj)
)

are homotopy
equivalent, and therefore their algebraic Kn-groups are all isomorphic.
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Let S be another ring and N• a bounded complex of S-R-bimodules. If SN• ∈ C b(S-proj), then the
tensor functor N• ⊗•

R − : C b(R-proj) → C b(S-proj) is a map of Frobenious pairs. So, we obtain a map
K(N•⊗•

R−) : K(R)→ K(S) of K-theory spaces.
In case λ : R → S is a ring homomorphism, we choose N• = S and denote simply by K(λ) the map

K(S⊗R −) : K(R) → K(S). Since the homomorphism Kn(S[1]⊗•
R −) : Kn(R) → Kn(S), induced from the

map K(S[1]⊗•
R−) : K(R)→ K(S), is equal to the minus of Kn(λ), we shall denote the map K(S[1]⊗•

R−) by
−K(λ).

Note that the shift functor [1] : C b(R-proj) → C b(R-proj) is also a map of Frobenius pairs. Now, let ∆

be the diagonal map x 7→ (x,x) for x ∈ K(R) and let t : R-proj×R-proj → R-proj be the coproduct functor.
Then the induced map K([1]) : K(R)→ K(R) is a homotopy equivalence and a homotopy inverse of K(R) in
the sense that the composite of the following maps:

K(R) ∆ // K(R)×K(R)
K([1])×Id // K(R)×K(R)

K(t) // K(R)

is homotopic to the constant map which sends x to the base-point of K(R).

3.3 Fundamental theorems in algebraic K-theory of Frobenius pairs

Now, we recall some basic results on algebraic K-theory of Frobenious pairs in terms of derived categories.
Our main reference in this section is the paper [32] by Schlichting.

The following localization theorem may trace back to the localization theorem in [26, Section 5, Theorem
5] for exact categories, the fibration theorem in [37, Theorem 1.6.4] for Waldhausen categories, and the
localization theorem in [36, Theorem 1.8.2] for complicial biWaldhausen categories. For a proof of the
present form, we refer the reader to [32, Propositions 3 and 5, p.126 and p.128]. Also, the approximation and
cofinality theorems are taken from [32, Propositions 3 and 4].

Lemma 3.1. (1) Localization Theorem:

Let A F−→ B G−→ C be a sequence of Frobenius pairs. If the sequence DF(A)
DF (F)−→ DF(B)

DF (G)−→ DF(C)

of derived categories is exact, then the induced sequence K(A)
K(F)−→ K(B)

K(G)−→ K(C) of K-theory spaces is a
homotopy fibration, and therefore there is a long exact sequence of K-groups

· · · −→ Kn+1(C)−→ Kn(A)
Kn(F)−→ Kn(B)

Kn(G)−→ Kn(C)−→ Kn−1(A)−→

·· · −→ K0(A)−→ K0(B)−→ K0(C)−→ 0

for all n ∈ N.
(2) Approximation Theorem:
Let G : B→C be a map of Frobenius pairs. If the associated functor DF(G) : DF(B)→DF(C) of derived

categories is an equivalence, then the induced map K(G) : K(B)→ K(C) of K-theory spaces is a homotopy
equivalence. In particular, Kn(G) : Kn(B) '−→ Kn(C) for all n ∈ N.

(3) Cofinality Theorem:
Let G : B → C be a map of Frobenius pairs. If the associated functor DF(G) : DF(B) → DF(C) of

derived categories is an equivalence up to factors, then the induced map K(G) : K(B)→ K(C) of K-theory
spaces gives rise to an injection K0(G) : K0(B)→ K0(C) and an isomorphism: Kn(G) : Kn(B) '−→ Kn(C) for
all n > 0.

Note that the surjectivity of the last map in the long exact sequence in Lemma 3.1 (1) follows from the
fact that K0(C) is isomorphic to the Grothendieck group K0

(
DF(C)

)
of DF(C).

The localization theorem is useful, but when we deal with K-theory of recollements, the obstacle for us to
use it is that, in a given recollement of derived module categories, we do not know whether the given functors
between derived categories are induced from exact functors between Frobenius pairs.
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For our purpose of later proofs, we mention the following result which is a slight variation of [32, Section
6.1] and has been mentioned there without proof. For the convenience of the reader, we include here a proof
(see also [24, Lemma 2.5] for a special case).

Lemma 3.2. Thickness Theorem:
Let C := (C ,C0) be a Frobenius pair. Suppose that there is a triangulated category C together with a

triangle equivalence G : DF(C) → C . Let X be a full triangulated subcategory of C . Define X to be the
full subcategory of C consisting of objects X such that G(X) ∈X . Then the following statements are true:

(1) The category X contains C0 and is closed under extensions in C . Moreover, X naturally inherits a
Frobenius structure from C , and becomes a Frobenius subcategory of C such that X -proj = C -proj.

(2) Both X := (X ,C0) and CX := (C ,X ) are Frobenius pairs, and the inclusion functor X → C and the
identity functor C → C induce the following commutative diagram of triangulated categories:

DF(X) � � //

'
��

DF(C) //

'G
��

DF(CX )

'
��

X
� � // C // C /X

(3) If X is closed under direct summands in C , then both rows in the diagram of (2) are exact sequences
of triangulated categories.

Proof. (1) By definition of DF(C) := C /C0, the objects of DF(C) are the same as the objects of C . Thus,
if M ∈ C0 or M ∈ C -proj, then M ' 0 in DF(C). This implies that X contains both C0 and C -proj. Since G
is a triangle functor and X is a full triangulated subcategory of C , it is easy to see that X is closed under
extensions in C .

Since X is closed under extensions in C , we can endow X with an exact structure induced from the one
of C , namely, a sequence X → Y → Z with all terms in X is called a conflation in X if it is a conflation in
C . Then one can check that, with this exact structure, X becomes an exact category. Now, we claim that X
is even a Frobenius category such that X -proj = C -proj. Indeed, it suffices to show that if L → P → N is a
conflation in C with P ∈ C -proj, then L ∈ X if and only if N ∈ X . Actually, such a conflation can be extended
to a distinguished triangle L → P → N → L[1] in C , and further, to a distinguished triangle in DF(C). Since
P ' 0 in DF(C), we have N ' L[1] in DF(C). As X is closed under shifts in C and G is a triangle functor,
we know that G(L) ∈X if and only if G(N) ∈X . In other words, L ∈ X if and only if N ∈ X . This verifies
the claim.

(2) Note that C0 ⊆ X ⊆ C and C0-proj ⊆ X -proj = C -proj. Thus X := (X ,C0) and CX := (C ,X ) are
Frobenius pairs.

Recall that DF(X) := X /C0 and DF(CX ) := C /X . Clearly, the inclusion functor λ : X → C and the
identity functor IdC : C → C are maps from the Frobenius pair X to the Frobenius pairs C, and from C to
CX , respectively. So we have two triangle functors DF(λ) : X /C0 → C /C0 and DF(IdC ) : C /C0 → C /X ,
which are induced from the inclusion X ⊆ C and the identity functor of C , respectively.

Clearly, X contains C0, that is, the objects of C0 is a subclass of the objects of X with the morphism set
HomC0(X ,Y ) = HomX (X ,Y ) for all objects X ,Y in C0. Since the inclusion X ⊆ C is fully faithful, the functor
DF(λ) is also a fully faithful inclusion which gives rise to the following commutative diagram:

(∗) X /C0
� �DF (λ) //

'
��

C /C0

'G
��

X
� � // C .

Consequently, G induces a triangle equivalence

G1 : (C /C0)/(X /C0)
'−→ C /X .
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By the universal property of the Verdier localization functor q1 : C → C /X (respectively, q2 : C/C 0 →
(C /C0)/(X /C0)), there is a triangle functor φ : C /X → (C /C0)/(X /C0) (respectively, ψ : (C /C0)/(X /C0)→
C /X ) such that q2q0 = φq1 (respectively, DF(IdC ) = ψq2), where q0 : C → C/C 0 is the Verdier localization
functor. Since q1 = DF(IdC )q0, we have

ψφq1 = ψq2q0 = DF(IdC )q0 = q1 and φDF(IdC )q0 = φq1 = q2q0.

It follows that ψφ = Id and φDF(IdC ) = q2. As φψq2 = φψφDF(IdC ) = φDF(IdC ) = q2, we obtain φψ = Id.
Thus φ is a triangle isomorphism.

Now, we define G := G1φ : C /X → C /X . Then the following diagram of triangulated categories

(∗∗) C /C0
DF (IdC )//

'G
��

C /X

'G
��

C
q // C /X .

is commutative, where q is the Verdier localization functor. Now, (2) follows from (∗) and (∗∗).
(3) In this case, X is the kernel of the localization functor q : C → C /X . Thus (3) follows. �.

4 Algebraic K-theory of differential graded algebras

4.1 Definitions of K-theory spaces of dg algebras

In this subsection, we shall give a definition of K-theory spaces of differential graded algebras, which gener-
alizes the one of K-theory spaces of usual rings and modifies slightly the definition in [32]. But, at the level
of homotopy groups, the two definitions give the isomorphic algebraic Kn-groups for n ∈ N.

Throughout this subsection, k stands for an arbitrary but fixed commutative ring, and all rings considered
here are k-algebras. Note that each ring with identity can be regarded as a Z-algebra.

Let A be a differential graded (dg) associative and unitary k-algebra, that is, A = ⊕n∈ZAn is a Z-graded
k-algebra with a differential dn : An → An+1 such that (An,dn)n∈Z is a chain complex of k-modules and

(xy)dm+n = x(ydn)+(−1)n(xdm)y

for m ∈ Z, x ∈ Am and y ∈ An. Thus the map A⊗•
k A→ A, a⊗k b 7→ ba for a,b ∈ A, is a chain map.

A left dg A-module M• is a Z-graded left module M• = ⊕n∈ZMn over the Z-graded k-algebra A, with
a differential d such that (Mn,d)n∈Z is a complex of k-modules, and for any a ∈ Am,x ∈ Mn, the following
holds:

(ax)dm+n = a(xdn)+(−1)n(adm)x.

In particular, each dg A-module is a Z-graded A-module (forgetting the differential).
For a dg A-module M•, we denote by M•[1] the shift of M• by degree 1.
We should observe that the dg algebra (A,d) and left dg A-module M• defined in this paper are actually

the dg algebra (Aop
,d) and right dg Aop

-module in the sense of [16, Summary], respectively.
In the following, we give a typical way to obtain dg algebras by taking Hom-complexes of dg modules.
Let (X•,dX•) and (Y •,dY •) be two dg A-modules. The Hom-complex of X• and Y • over A is defined to

be the following complex Hom•
A(X•,Y •) :=

(
Homn

A(X•,Y •),d n
X•,Y •

)
n∈Z over k:

As a k-module, the n-th component Homn
A(X•,Y •) is formed by the morphisms h : X• → Y • of graded

A-modules, homogeneous of degree n. In other words, h is a homomorphism of A-modules such that h =
(hp)p∈Z with hp ∈ Homk(X p,Y p+n). Further, the differential d n

X•,Y • : Homn
A(X•,Y •) → Homn+1

A (X•,Y •) of
degree n is given by

(hp)p∈Z 7→
(
hpdp+n

Y • − (−1)ndp
X•hp+1)

p∈Z.
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Furthermore, we take another dg A-module Z•, and define

◦ : Hom•
A(X•,Y •)×Hom•

A(Y •,Z•)−→ Hom•
A(X•,Z•), ( f ,g) 7→ ( f pgp+m)p∈Z

for f := ( f p)p∈Z ∈ Homm
A(X•,Y •) and g := (gp)p∈Z ∈ Homn

A(Y •,Z•) with m,n ∈ Z. Thus the operation ◦ is
associative and distributive. In particular, under this operation, Hom•

A(X•,X•) is a Z-graded ring. Moreover,
the above-defined operation ◦ satisfies the following identity:

( f ◦g)d m+n
X•,Z• = f ◦ (g)d n

Y •,Z• +(−1)n( f )d m
X•,Y • ◦g.

This implies that Hom•
A(X•,X•), together with the differential of itself as a complex over k, is a dg algebra.

In this sense, End•A(X•) will be called the dg endomorphism ring of X•, and denoted simply by End•A(X•).
Also, due to the above identity, the complex Hom•

A(X•,Y •) is actually a left dg End•A(X•)- and right dg
End•A(Y •)- bimodule.

Now, we recall the definition of the category C (A)of left dg A-modules. Actually, this category has all dg
A-modules as objects, and a homomorphism f • : X• → Y • between dg A-modules X• and Y • is a chain map
of complexes over k, which commutes with the A-actions on X• and Y •. This means that HomC (A)(X•,Y •)
is exactly the 0-th cocycle of the complex Hom•

A(X•,Y •). It is known that C (A) is a Frobenius category (see
[16, Section 2]) by declaring a conflation to be a short sequence of dg A-modules such that the underlying
sequence of graded A-modules (forgetting differentials) is split exact. The stable category of C (A) is the
dg homotopy category K (A) in which the objects are the dg A-modules and the morphisms are the homo-
topy classes of homomorphisms of dg A-modules. In other words, HomK (A)(X•,Y •) is equal to the 0-th
cohomology H0

(
Hom•

A(X•,Y •)
)

of the complex Hom•
A(X•,Y •).

We say that f • is a quasi-isomorphism if it is a quasi-isomorphism as a chain map of complexes over k,
that is, H i( f •) : H i(X•)→H i(Y •) is an isomorphism for every i ∈ Z. By inverting all quasi-isomorphisms of
dg A-modules, we obtain the dg derived category D(A) of A. This is a triangulated category and generated
by the dg module A, that is, D(A) = Tria(A).

Observe that an ordinary k-algebra A can be regarded as a dg algebra concentrated in degree 0, and that
the above-mentioned categories C (A), K (A) and D(A) coincide with the usual complex, homotopy and
derived categories of the category of left A-modules, respectively.

To give a description of D(A) by a triangulated subcategory of K (A) up to equivalence, we shall recall
some more definitions in [16].

The dg A-module X• is said to be acyclic if it is acyclic as a complex of k-modules, that is, H i(X•) = 0
for all i ∈ Z; is said to have the property (P) if HomK (A)(X•,Y •) = 0 for any acyclic dg A-module Y •, or
equivalently, Hom•

A(X•,Y •) is acyclic as a complex over k. Note that the class of dg A-modules with the
property (P) is closed under extensions, shifts, direct summands and direct sums in C (A). We denote by
K (A)p the full subcategory of K (A) consisting of all modules with the property (P). Then K (A)p ⊆
K (A) is a triangulated subcategory containing A and being closed under direct sums. More important, by
[16, Section 3.1], the Verdier localization functor q : K (A)→D(A) restricts to a triangle equivalence

q̃ : K (A)p
'−→D(A).

This implies that any quasi-isomorphism between two dg A-modules with the property (P) is an isomorphism
in K (A) and that, for each dg A-module M•, there is a (functorial) quasi-isomorphism pM• → M• of dg A-
modules such that pM• has the property (P).

With the help of the above triangle equivalence, we can define the total left-derived functors of tensor
functors. This procedure is similar to the one for usual complexes over ordinary rings.

Let W • be a right dg A-module and X• a (left) dg A-module. The tensor complex of W • and X• over A
is defined to be the following complex W •⊗•

A X• :=
(
W •⊗n

AX•,∂n
W •,X•

)
n∈Z over k:

As a k-module, the n-th component W •⊗n
AX• is the quotient module of

L
p∈ZW p ⊗k Xn−p modulo the

k-submodule generated by all elements ua⊗ v− u⊗ av for u ∈ W r, a ∈ As and v ∈ X t with r,s, t ∈ Z and
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n = r + s+ t. Further, the differential ∂W •,X• of degree n is given by

w⊗ x 7→ (w)dp
W •⊗ x+(−1)pw⊗ (x)dn−p

X•

for w ∈W p and x ∈ Xn−p.
Assume further that B is another dg algebra and that W • is a B-A-bimodule. Then W •⊗•

A X• is indeed a
dg B-module. This gives rise to the following tensor functor

BW •⊗•
A− : C (A)−→ C (B), X• 7→W •⊗•

A X•.

Now, the total left-derived functor W •⊗L
A− : D(A)→D(B) of this functor is defined by X• 7→W •⊗•

A (pX•).
Particularly, if X• has the property (P), then W •⊗L

A X• = W •⊗•
A X• in D(B).

A dg A-module M is called relatively countable projective (respectively, countable projective) if there is
a dg A-module N such that M⊕N is isomorphic to

L
i∈I A[ni] as dg A-modules (respectively, as Z-graded

A-modules), where I is a countable set and ni ∈ Z. Clearly, relatively countable projective modules are
countable projective modules, and have the property (P) since HomK (A)(A[i],M)' H−i(M) for all i.

Let X (A) be the full subcategory of C (A) consisting of countable projective A-modules. Then X (A)
is an essentially small category. This is due to the following observation: Let G(A) be the category of Z-
graded A-modules. For every X :=

L
i∈Z X i ∈ G(A), we have the following: (a) The class U(X) consisting

of isomorphism classes of direct summands of X in G(A) is a set. In fact, there is a surjection from the set
of idempotent elements of EndG(A)(X) to U(X). (b) The class V (X) consisting of all dg A-modules with
X as the underlying graded A-module is also a set since V (X) is contained into the set {(X ,di)i∈Z | di ∈
Homk(X i,X i+1)}, which is a countable union of sets.

Furthermore, X (A) is closed under extensions, shifts, direct summands and countable direct sums in
C (A).

Let C (A,ℵ0) be the smallest full subcategory of X (A) such that it
(1) contains all relatively countable projective A-modules;
(2) is closed under extensions and shifts;
(3) is closed under countable direct sums.

Then C (A,ℵ0) is essentially small, inherits an exact structure from C (A), and becomes a fully exact
subcategory of C (A). Even more, C (A,ℵ0) is a Frobenius subcategory of C (A), in which projective-
injective objects are the ones of C (A) belonging to C (A,ℵ0). This can be concluded from the following
fact: For each M ∈ C (A), there is a canonical conflation M →C(M) → M[1] in C (A) such that C(M) is a
projective-injective object of C (A) (see [16, Section 2.2]). Hence C (A,ℵ0) provides a natural Frobenius
pair (C (A,ℵ0),C (A,ℵ0)-proj), and the inclusion C (A,ℵ0)⊆ C (A) induces a fully faithful inclusion from
the derived category DF(C (A,ℵ0)) of C (A,ℵ0) to K (A).

We denote by K (A,ℵ0) the full subcategory of K (A) consisting of those complexes which are iso-
morphic in K (A) to objects of C (A,ℵ0). Then K (A,ℵ0) is a triangulated subcategory of K (A) by the
condition (2), and the inclusion DF(C (A,ℵ0))⊆K (A,ℵ0) is a triangle equivalence. Since the full subcat-
egory of X (A) consisting of all dg A-modules with the property (P) satisfies the above conditions (1)-(3),
we deduce that each object of C (A,ℵ0) has the property (P). This implies that K (A,ℵ0)⊆K (A)p. Fur-
thermore, by definition, C (A,ℵ0) is closed under countable direct sums in C (A), and therefore K (A,ℵ0)
is closed under countable direct sums in K (A)p. It follows from Lemma 2.1 (1) that K (A,ℵ0) is closed
under direct summands in K (A)p.

Now, let X (A) be the full subcategory of D(A) consisting of all those objects which are isomorphic in
D(A) to the images of objects of K (A,ℵ0) under the equivalence q̃ : K (A)p

'−→D(A). Then X (A) is a
triangulated subcategory of D(A) closed under direct summands, and q̃ induces a triangle equivalence from
K (A,ℵ0) to X (A). In all, we have

DF(C (A,ℵ0))⊆K (A,ℵ0)⊆K (A)p, X (A)⊆D(A)
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and
DF(C (A,ℵ0))

'−→K (A,ℵ0)
'−→X (A)

as triangulated categories.
Recall that a dg A-module M is called a finite cell module if there is a finite filtration

0 = M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ Mn = M

of dg A-modules such that, for each 0 ≤ i ≤ n−1 ∈ N, the quotient module Mi+1/Mi is isomorphic to A[ni]
for some ni ∈ Z (see [18, Part III]). Clearly, each finite cell A-module belongs to C (A,ℵ0). Moreover,
the category of finite cell A-modules is closed under extensions in C (A,ℵ0). Actually, this category is a
Frobenius subcategory of C (A,ℵ0), in which projective-injective objects are the ones of C (A,ℵ0) belonging
to this subcategory.

An object M ∈D(A) is said to be compact if HomD(A)(M,−) commutes with direct sums in D(A). Let
Dc(A) be the full subcategory of D(A) consisting of all compact objects. Then Dc(A) is the smallest full
triangulated subcategory of D(A) containing A and being closed under direct summands of its objects. In
fact, each compact object of D(A) is a direct summand of a finite cell module in D(A) (see [16, Section 5]).
This implies the following chain of full subcategories: Dc(A)⊆X (A)⊆D(A).

Now, we define WA to be the full subcategory of C (A,ℵ0) consisting of all those objects in C (A,ℵ0)
such that they are isomorphic in D(A) to compact objects of D(A). Clearly, WA is essentially small. More-
over, by applying Lemma 3.2 to the Frobenius pair C (A,ℵ0) and the equivalence DF(C (A,ℵ0))

'−→X (A)
with the triangulated subcategory Dc(A) of X (A), we deduce that WA is a Frobenius subcategory of
C (A,ℵ0) with the same projective objects, and that the following diagram of triangulated categories com-
mutes:

(?) DF(WA) � � //

'
��

DF(C (A,ℵ0))

'
��

� � // K (A)p

'q̃
��

� � // K (A)
q

zzttttttttt

Dc(A) � � // X (A) � � // D(A)

From now on, we regard WA as a Waldhausen category in the sense of Subsection 3.2, namely, it arises
exactly from the Frobenius pair (WA,WA-proj).

Definition 4.1. The algebraic K-theory space of the dg k-algebra A is defined to be the space K(WA) of the
Waldenhausen category WA, denoted by K(A). For each n ∈ N, the n-th algebraic K-group of A is defined
to be the n-th homotopy group of K(A) and denoted by Kn(A).

Note that K0(A) is isomorphic to K0(DF(WA)), the Grothendieck group of the (essentially small) trian-
gulated category DF(WA) of the Frobenius pair (WA,WA-proj)(see Subsection 3.2). As a result, we have
the following fact.

Lemma 4.2. The Verdier localization functor K (A)→D(A) induces a triangle equivalence: DF(WA) '−→
Dc(A). In particular, K0(WA) is isomorphic to the Grothendieck group K0(Dc(A)) of Dc(A).

Our definition of K-theory spaces of dg algebras has the following property.

Lemma 4.3. Let FA be the full subcategory of WA consisting of all finite cell A-modules. Then the inclusion
FA →WA induces an injection K0(FA)→K0(WA) and an isomorphism Kn(FA) ∼−→Kn(WA) for each n > 0.

Proof. Note that FA is a Frobenius subcategory of WA and that the inclusions FA ⊆ WA ⊆ C (A) induce
fully faithful inclusions DF(FA)⊆DF(WA)⊆K (A)p (see Subsection 3.2).

To show that the inclusion DF(FA) → DF(WA) is an equivalence up to factors, we shall compare the
images of these two categories under the equivalence q̃ : K (A)p →D(A) in the above diagram (?). In fact,
by Lemma 4.2, the restriction of the functor q̃ to DF(WA) gives rise to a triangle equivalence DF(WA) '−→
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Dc(A). Let Y be the smallest full triangulated subcategory of Dc(A) containing A. Since the objects
of DF(FA) are the same as the ones of FA, the image of the restriction of the functor q̃ to DF(FA) is
contained in Y , and therefore is equal to Y . Thus q̃ induces a triangle equivalence DF(FA) '−→ Y . Since
Dc(A) = thick(A) and A ∈ Y ⊆ Dc(A), we have thick(Y ) = Dc(A). So the inclusion Y → Dc(A) is an
equivalence up to factors. Consequently, the inclusion DF(FA)→ DF(WA) induced from FA ⊆ WA is also
an equivalence up to factors. Now, Lemma 4.3 follows from Lemma 3.1 (3). �.

Remark 4.4. In [32, Section 12.3], a K-theory spectrum K(FA) is defined for the category FA. Moreover, it
is known in [32, Theorem 8] that, for each n ∈ N, the n-th homology group of K(FA) is given by

πn
(
K(FA)

)
=

{
Kn(FA) if n > 0,
K0(Dc(A)) if n = 0.

Thus Lemmas 4.3 and 4.2 show that πn
(
K(FA)

)
'Kn(A) for all n∈N, and therefore, at the level of homotopy

groups, our definition of K-theory for dg algebras is isomorphic to the one defined by Schlichting in [32].

The following result, together with Lemma 4.3, may explain the advantage of defining K-theory of arbi-
trary dg algebras by using the category WA rather than FA.

Lemma 4.5. Let A be an algebra with identity, and let A be the dg algebra A concentrated in degree 0. Then
K(A) and K(A) are homotopy equivalent as K-theory spaces.

Proof. Clearly, C (A) = C (A), K (A) = K (A) and D(A) = D(A). In particular, Dc(A) = Dc(A). By
the construction of WA, we see that C b(A-proj)⊆WA and C b(A-proj)-proj = C b

ac(A-proj)⊆WA-proj. Thus
the inclusion j : C b(A-proj)→ WA is a fully faithful map of Frobenius pairs. In other words, C b(A-proj) is
a Frobenius subcategory of WA. This implies that the triangle functor DF( j) : DF(C b(A-proj))→DF(WA)
is fully faithful (see Subsection 3.2). Now we show that DF( j) is an equivalence. On the one hand, the
localization functor q : K (A) → D(A) induces an equivalence q1 : DF(WA) → Dc(A) by Lemma 4.2. On
the other hand, the composite of the following functors:

K b(R-proj) = DF(C b(A-proj))
DF ( j)−→ DF(WA)

q1−→Dc(A)

is also an equivalence induced by q. Thus DF( j) is a triangle equivalence. By Lemma 3.1 (2), we know that
K(A) ∼−→ K(WA) =: K(A) as K-theory spaces. �

4.2 Homotopy equivalences of K-theory spaces from perfect dg modules

In this subsection, we introduce the definition of perfect dg modules over dg rings, and discuss homotopy
equivalences of K-theory spaces of dg algebras linked by perfect dg modules.

Let A be a dg algebra. A dg A-module is said to be perfect if it belongs to WA. Recall that each perfect
dg A-module has the property (P) and is compact in D(A). Conversely, each compact dg A-module is
isomorphic in D(A) to a perfect one, but itself may not have the property (P). Moreover, if A is an ordinary
ring concentrated in degree 0, then each bounded complex of finitely generated projective A-modules is
perfect.

First of all, we point out the following result, which may illustrate the importance of perfect dg modules.
For a proof, we refer to [16, Section 3.1].

Lemma 4.6. Let M be a dg A-module and let S := End•A(M). If AM is perfect, then the left-derived functor
M⊗L

S − : D(S)→ Tria(AM) is a triangle equivalence.

In the following lemma, we can see that perfect dg modules always provide us with maps of Frobenius
pairs which define algebraic K-theory spaces of dg algebras.
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Lemma 4.7. Let B be a dg algebra and let M be a dg A-B-bimodule. If AM is perfect, then the tensor functor
AM⊗•

B− : WB → WA is a map of Frobenius pairs.

Proof. For simplicity, we denote by G the tensor functor M⊗•
B− : C (B)→ C (A). In the following, we

show that G(WB)⊆ WA.
Let X (B) and X (A) be the full subcategories of C (B) and C (A) consisting of all countable projective

modules, respectively. Recall that X (A) is closed under shifts, direct summands and countable direct sums in
C (A). Then, it follows from G(B) = M⊗•

B B' M ∈ WA ⊆ X (A) that the functor G : X (B)→ X (A) is well
defined. Since G always preserves conflations and commutes with both shifts and countable direct sums, the
following full subcategory

G−1(C (A,ℵ0)) := {N ∈ X (B) | G(N) ∈ C (A,ℵ0)}

of X (B) contains all relatively countable projective B-modules, and is closed under extensions, shifts and
countable direct sums. Given that C (B,ℵ0) is the smallest subcategory of X (B) admitting these properties,
we have C (B,ℵ0) ⊆ G−1(C (A,ℵ0)). Thus G(C (B,ℵ0)) ⊆ C (A,ℵ0) and G : C (B,ℵ0) → C (A,ℵ0) is a
well-defined functor.

Furthermore, since each object N ∈ C (B,ℵ0) always has the property (P), we see that G(N) = M⊗L
B N

in D(A). So, to show that G(WB) ⊆ WA, it suffices to prove that if N ∈ WB, then M⊗L
B N ∈ Dc(A). For

checking this, we take an object N ∈ WB. Then N ∈ Dc(B). Since each perfect dg A-module is compact in
D(A), we have M⊗L

B B = M⊗B B ' M ∈ Dc(A). This implies that the functor M⊗L
B − : D(B) → D(A)

preserves compact objects. Thus M⊗L
B N ∈Dc(A) and G(WB)⊆ WA.

Recall that, for an arbitrary dg algebra S, the category WS-proj consists of all those objects which are
homotopy equivalent to the zero object in C (S). As G always preserves conflations and homotopy equiva-
lences, we see that G sends projective objects of WB to the ones of WA. Thus G : WB → WA is a map of
Frobenius pairs. �

Next, we show that perfect dg modules can offer homotopy equivalences of algebraic K-theory spaces.

Lemma 4.8. Let B be a dg algebra and let M be a dg A-B-bimodule such that AM is perfect. Let P be the
full subcategory of WA consisting of all those dg A-modules, which, regarded as objects of D(A), belong to
Tria(AM). Then the followings hold true:

(1) The category P is a Frobenius subcategory of WA and the map AM⊗•
B − : WB → WA factorizes

through the inclusion P ↪→ WA.
(2) If the left-derived functor AM⊗L

B− : D(B)→ Tria(AM) is an equivalence, then AM⊗•
B− : WB → P

induces a homotopy equivalence K(B) ∼−→K(P ) of K-theory spaces. If, in addition, D(A) = Tria(AM), then
K(B) ∼−→ K(A) as K-theory spaces.

Proof. (1) Let X := Tria(AM)∩Dc(A). Then X is a full triangulated subcategory of Dc(A). Since
the localization functor q : K (A) → D(A) induces a triangle equivalence DF(WA) '−→ Dc(A) by Lemma
4.2, we see that P is exactly the full subcategory of WA consisting of all those dg A-modules, which are
isomorphic in Dc(A) to objects of X . Hence, by Lemma 3.2, P is a Frobenius subcategory of WA and q
induces a triangle equivalence q1 : DF(P ) '−→X .

By Lemma 4.7, the functor G : WB → WA is a map of Frobenius pairs. Note that D(B) = Tria(B) and
M⊗L

B− commutes with arbitrary direct sums. By Lemma 2.1 (2), we have M⊗L
B N ∈ Tria(AM). It follows

that M⊗L
B N ∈ Tria(AM)∩Dc(A) = X , and therefore G(WB)⊆ P . This implies that M⊗•

B− : WB → WA
factorizes through the inclusion P ↪→ WA.

(2) Since D(A) = Tria(A) and AM ∈ Dc(A), we know from [22, Theorem 4.4.9] that X coincides
with the full subcategory of Tria(AM) consisting of all compact objects in Tria(AM). Now, suppose that the
functor M⊗L

B− : D(B) → Tria(AM) is an equivalence. Then this functor restricts to a triangle equivalence
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Dc(B) '−→ X . Moreover, by Lemma 4.2, the localization functor K (B) → D(B) induces an equivalence
q̃ : DF(WB) '−→Dc(B). From the following commutative diagram:

DF(WB)

q̃'
��

DF (M⊗•
B−)

// DF(P )

q '
��

Dc(B)
M⊗L

B−
'

// X

we infer that DF(M⊗•
B−) : DF(WB) '−→ DF(P ) is a triangle equivalence. It follows from Lemma 3.1 (2)

that K(B) ∼−→ K(P ) as K-theory spaces. Clearly, if D(A) = Tria(AM), then P = WA. Thus (2) follows. �

As a consequence of Lemma 4.8, we re-obtain the following result in [12, Proposition 6.7 and Corollary
3.10] where its proof uses knowledge on model categories.

Corollary 4.9. Let λ : B → A be a homomorphism of dg algebras which is a quasi-isomorphism. Then the
functor A⊗•

B − : C (B) → C (A) induces a homotopy equivalence K(B) ∼−→ K(A) of K-theory spaces. In
particular, if H i(A) = 0 for all i 6= 0, then K(A) ∼−→ K(H0(A)).

Proof. In Lemma 4.8, we take M = A. Then M is a dg A-B-bimodule via λ : B→A such that it is perfect
as a dg A-module, and that Tria(AM) = D(A). Since λ is a quasi-isomorphism of dg algebras, it follows
from [18, Proposition 4.2] that the functor A⊗•

B− induces a triangle equivalence D(B) ∼−→D(A) (see also
[16, Section 3.1]). Now, the first part of Corollary 4.9 follows from Lemma 4.8 (2).

Suppose that A := (Ai,di)i∈Z with H i(A) = 0 for all i 6= 0. We define τ≤0(A) to be the following dg
algebra:

· · · −→ A−3 d−3

−→ A−2 d−2

−→ A−1 d−1

−→ Ker(d0)−→ 0 −→ ·· · .

Then there exist two canonical quasi-isomorphisms τ≤0(A) → A and τ≤0(A) → H0(A) of dg algebras. It
follows from the first part of Corollary 4.9 that

K(τ≤0(A)) ∼−→ K(A) and K(τ≤0(A)) ∼−→ K(H0(A)).

Combining these homotopy equivalences with Lemma 4.5, we see that K(A) ∼−→ K(H0(A)) as K-theory
spaces. �

Combining Lemma 4.8 with Lemma 4.6, we have the following applicable result.

Corollary 4.10. Let M be a perfect dg A-module and let S := End•A(M). Define P to be the full subcategory
of WA consisting of all those dg A-modules, which, regarded as objects in D(A), belong to Tria(AM). Then
K(S) ∼−→ K(P ) as K-theory spaces. Moreover, if D(A) = Tria(AM), then K(S) ∼−→ K(A) as K-theory
spaces.

As a consequence of Corollary 4.10, we obtain the following fact.

Corollary 4.11. Let M and N be two perfect dg A-modules. If Tria(M) = Tria(N)⊆D(A), then

K
(
End•A(M)

) ∼−→ K
(
End•A(N)

)
.

The following result conveys that, for ordinary rings, we can choose smaller subcategories of perfect
complexes to realize the homtopy equivalence in Corollary 4.10.

Corollary 4.12. Let A be an algebra and P• ∈ C b(A-proj). Define S := End•A(P•) and P to be the full
subcategory of C b(A-proj) consisting of all those complexes which, regarded as objects in D(A), belong to
Tria(P•). Then K(S) ∼−→ K(P ) as K-theory spaces.
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Proof. We remark that P is a Frobenius subcategory of C b(A-proj) such that its derived category DF(P )
is equivalent to X := Tria(P•)∩Dc(A) via the localization functor q : K (A)→D(A).

Actually, since X is a full triangulated subcategory of Dc(A) and DF(C b(A-proj)) = K b(A-proj) '−→
Dc(A), we see that P is exactly the full subcategory of C b(A-proj), in which the objects are complexes in
C b(A-proj) such that they are isomorphic in Dc(A) to objects of X . Hence, by Lemma 3.2, P is a Frobenius
subcategory of C b(A-proj) and the functor q induces an equivalence q1 : DF(P ) '−→X .

Now we view A as a dg algebra concentrated in degree 0, and let X be the full subcategory of WA

consisting of those objects that are isomorphic in D(A) to objects of Tria(AP•). Since each object of WA is
compact in D(A), we clearly have X = {X ∈WA | X ∈X }. Note that P• is a dg A-S-bimodule such that it is
perfect as a dg A-module. So, from the proof of Lemma 4.8 (1), we know that X is a Frobenius subcategory
of WA, the functor P•⊗•

S − : WS → X is a map of Frobenius pairs and q induces a triangle equivalence
q2 : DF(X ) '−→X .

In the following, we first show that K(P ) ∼−→ K(X ), and then that K(S) ∼−→ K(X ) as K-theory spaces.
With these two homotopy equivalences in mind, we will obviously have K(S) ∼−→ K(P ), as desired.

Let us check that K(P ) ∼−→ K(X ). Actually, it follows from C b(A-proj) ⊆ WA that P ⊆ X . Since
P -proj = C b

ac(A-proj)⊆ WA-proj = X -proj, the inclusion µ : P → X of Frobenius categories induces a fully
faithful functor DF(µ) : DF(P )→DF(X ). Since q1 = q2DF(µ), we see that DF(µ) is an equivalence. Thus
the map K(µ) : K(P )→ K(X ) is a homotopy equivalence by Lemma 3.1 (2).

It remains to show that the map P•⊗•
S − : WS → X induces a homotopy equivalence K(S) ∼−→ K(X ).

In fact, since each object of C b(A-proj) is perfect, it follows from Lemma 4.6 that the functor P•⊗L
S − :

D(S)→ Tria(AP•) is a triangle equivalence. Thus K(S) ∼−→ K(X ) by Lemma 4.8 (2). �

4.3 Decomposition of higher algebraic K-groups

In this subsection, we shall establish reduction formulas for calculation of algebraic K-groups of dg algebras.
The main result of this subsection is Proposition 4.14, which will be applied in the next subsection to show
Theorem 1.1.

First, we extend a result of Berrick and Keating (see [2]) on algebraic K-groups of triangular matrix rings
to the ones of dg triangular matrix rings.

Lemma 4.13. Let R =
(

S M
0 T

)
be the dg triangular matrix algebra defined by dg algebras S, T and a

dg S-T-bimodule M. Then
Kn(R)' Kn(S)⊕Kn(T) for all n ∈ N.

Proof. Let e :=
(

0 0
0 1

)
∈ R, f :=

(
1 0
0 0

)
∈ R and J := ReR. Then e2 = e, f 2 = f , eRe = T and

R/J = S. On the one hand, for each n ∈ Z, we have

HomD(R)(Re,R f [n])'HomK (R)(Re,R f [n])'Hn(Hom•
R(Re,R f )

)
'Hn(eHom•

R(R,R) f
)
'Hn(eR f

)
= 0.

On the other hand, both Re and R f are compact in D(R) and Tria(Re⊕R f ) = Tria(R) = D(R). Then, by
[15, Theorem 3.3], there exists a recollement of derived categories of dg algebras:

D(S)
D(λ∗) // D(R)

eR⊗•
R−//

RHomR(S,−)

dd

S⊗L
R−

��
D(T)

Re⊗L
T−

��

RHomT(eR,−)

dd

where D(λ∗) is the restriction functor induced from the canonical surjection : R → S. Note that the functors
S⊗L

R − and Re⊗L
T − preserve compact objects, and that RS = R f ∈ Dc(R) and eR = T ∈ Dc(T). Thus,
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from the above recollement we can get the following “half recollement” for the subcategories of compacts
objects:

(∗) Dc(S)
D(λ∗) // Dc(R)

eR⊗•
R−//

S⊗L
R−

~~
Dc(T)

Re⊗L
T−

~~

This implies that the following sequence of triangulated categories

Dc(S) Dc(R)
S⊗L

R−oo Dc(T).
Re⊗L

T−oo

is exact. Since RRe ∈ WR and SS ∈ WS, we see from Lemma 4.7 that the following functors

Re⊗•
T− : WT −→ WR, and S⊗•

R− : WR −→ WS

are well-defined maps of Frobenius pairs. Moreover, by Lemma 4.2, we can construct the following commu-
tative diagram:

Dc(S) Dc(R)
S⊗L

R−oo Dc(T)
Re⊗L

T−oo

DF(WS)

'

OO

DF(WR)
DF (S⊗•

R−)
oo

'

OO

DF(WT)
DF (Re⊗•

T−)
oo

'

OO

This implies that the second row is an exact sequence of triangulated categories:

DF(WS) DF(WR)
DF (S⊗•

R−)
oo DF(WT).

DF (Re⊗•
T−)

oo

By Lemma 3.1 (1), the following sequence of maps among K-theory spaces

K(S) K(R)
K(S⊗•

R−)
oo K(T).

K(Re⊗•
T−)

oo

is a homotopy fibration, and therefore there is a long exact sequence of K-groups:

· · · −→ Kn+1(S)−→ Kn(T)
Kn(Re⊗•

T−)
−→ Kn(R)

Kn(S⊗•
R−)

−→ Kn(S)−→ Kn−1(T)−→

·· · −→ K0(T)−→ K0(R)−→ K0(S)−→ 0

for all n ∈ N. It remains to show that this sequence breaks up into a series of split short exact sequences.
Actually, since eR = T ∈ WT, the functor eR⊗•

R − : WR → WT is a map of Frobenius pairs due to
Lemma 4.7. Note that (

eR⊗•
R−

)
(Re⊗•

T−)' (eRe)⊗•
T−' IdWT : WT −→ WT.

Thus the composite of the map K(Re⊗•
T−) : K(T) → K(R) with the map K(eR⊗•

R−) : K(R) → K(T) is
homotopic to the identity map on K(T). In view of Kn-groups, we have

Kn(Re⊗•
T−)Kn(eR⊗•

R−) = IdKn(T) : Kn(T)−→ Kn(T)

for each n ∈N. This implies that Kn(Re⊗•
T−) : Kn(T)→ Kn(R) is a split-injection. Combining this with the

above long exact sequence, we see that Kn(R)' Kn(S)⊕Kn(T) for each n ∈ N. �

Now, we give the main result of this subsection.
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Proposition 4.14. Let A be a dg algebra, and let M and N be two perfect dg A-modules. Suppose that
HomD(A)(M,N[i]) = 0 for all i ∈ Z. Then

Kn
(
End•A(M⊕N)

)
' Kn

(
End•A(M)

)
⊕Kn

(
End•A(N)

)
for all n ∈ N.

If, in addition, D(A) = Tria(M⊕N), then

Kn(A)' Kn
(
End•A(M)

)
⊕Kn

(
End•A(N)

)
for all n ∈ N.

Proof. We define B := End•A(M⊕N). Then

B =
(

End•A(M) Hom•
A(M,N)

Hom•
A(N,M) End•A(N)

)
.

Since M is perfect, it always has the property (P). This implies that HomK (A)(M,N[i])'HomD(A)(M,N[i])
for each i ∈ Z. Consequently, we have

H i(Hom•
A(M,N)

)
= HomK (A)(M,N[i])' HomD(A)(M,N[i]) = 0

and therefore the following canonical inclusion:

C :=
(

End•A(M) 0
Hom•

A(N,M) End•A(N)

)
↪→

(
End•A(M) Hom•

A(M,N)
Hom•

A(N,M) End•A(N)

)
= B

is a quasi-isomorphism of dg algebras. It follows from Lemma 4.9 that K(B) ∼−→ K(C) as K-theory spaces,
and therefore Kn(B)' Kn(C) for each n ∈ N. Further, due to Lemma 4.13, we have

Kn(C)' Kn(End•A(M))⊕Kn(End•A(N)).

Thus the first part of Proposition 4.14 follows.
To show the second part of Proposition 4.14, we note that Kn(A)' Kn(B) by Corollary 4.10 because the

dg A-module M⊕N is perfect and D(A) = Tria(M⊕N). �.

Following [25, Section 4], we say that a homomorphism λ : R → S of dg algebras is a homological
epimorphism if the restriction functor D(λ∗) : D(S) → D(R) is fully faithful. This is also equivalent to
that the canonical homomorphism S⊗L

R S → S is an isomorphism in D(S). Clearly, each homological ring
epimorphism is a homological epimorphism of dg algebras concentrated in degree 0.

Corollary 4.15. Let λ : R → S be a homological epimorphism of dg algebras. If the dg R-module S is
compact in D(R), then there exists a dg algebra T determined by λ such that

Kn(R)' Kn(S)⊕Kn(T) for all n ∈ N.

Proof. Since λ is a homological epimorphism of dg algebras, it follows from [25, Section 4] that there is
a recollement of triangulated categories:

D(S)
i∗ // D(R)

j!
//

ff

i∗
xx

Tria(RQ)
gg

j!
ww

where Q is a dg R-R-bimodule such that R λ−→ S −→ Q −→ R[1] is a distinguished triangle in K (R⊗k
Rop), and where j! is the canonical embedding and j! = Q⊗L

R−, i∗ = S⊗L
R−, i∗ = D(λ∗). This implies that

HomD(R)(Q,S[m]) = 0 for any m ∈ Z, and that D(R) = Tria(Q⊕S).

25



Assume that RS ∈Dc(R). Then Q ∈Dc(R). As each compact object of D(R) is isomorphic in D(R) to
a perfect dg R-module, there are two perfect dg R-modules N and M such that N ' S and M ' Q in D(R).
It follows that HomD(R)(M,N[m]) = 0 for any m ∈ Z, and that D(R) = Tria(M⊕N). By Proposition 4.14,

Kn(R)' Kn
(
End•R(M)

)
⊕Kn

(
End•R(N)

)
for all n ∈ N.

Now, we define T := End•R(M) and B := End•R(N). To finish the proof of Corollary 4.15, it suffices to show
that Kn(B)' Kn(S) as K-groups for each n ∈ N.

On the one hand, since RN is perfect, the left-derived functor N ⊗L
B− : D(B) → Tria(RN) is a triangle

equivalence by Lemma 4.6. On the other hand, since the functor i∗ is fully faithful, the adjoint pair (i∗, i∗)
implies that i∗ restricts to a triangle equivalence Tria(RS) '−→ D(S). Moreover, due to N ' S in D(R), we
have Tria(RN) = Tria(RS). Thus the composite (S⊗L

R−)(N⊗L
B−) : D(B)→ D(S) of the functors N⊗L

B−
and i∗ is a triangle equivalence. Since RN is perfect, we see that RN has the property (P) and that S⊗•

B N is
a perfect dg S-module by Lemma 4.7. As the functor N⊗•

B− : K (B)→K (R) preserves dg modules with
the property (P), we clearly have

(S⊗L
R−)(N⊗L

B−)' (S⊗•
R N)⊗L

B− : D(B) '−→D(S).

It follows from Lemma 4.8 (2) that K(B) ∼−→ K(S) as K-theory spaces. This gives rise to Kn(B)' Kn(S). �

Applying Corollary 4.15 to homological epimorphisms of ordinary rings, we obtain the following result.

Corollary 4.16. Let λ : R → S be a homological ring epimorphism such that RS has a finite-type resolution.

Denote by Q• the two-term complex 0 → R λ−→ S → 0 with R and S in degrees 0 and 1, respectively. Let
P• ∈ C b(R-proj) such that Tria(P•) = Tria(RQ•)⊆D(R). Then

Kn(R)' Kn(S)⊕Kn
(
End•R(P•)

)
for all n ∈ N.

Proof. Since RS has a finite-type resolution, we can choose a complex N• in C b(R-proj) such that RS is
isomorphic to N• in D(R). So we get a chain map from RR to N• such that its mapping cone M• is isomorphic
in D(R) to Q•. It follows that M• ∈ C b(R-proj) and Tria(M•) = Tria(RQ•)⊆D(R).

Next, we regard R and S as dg Z-algebras concentrated in degree 0. Then λ : R → S is a homological
epimorphism of dg algebras. Moreover, both N• and M• are perfect dg R-modules. By Lemma 4.5 and the
proof of Corollary 4.15, we see that Kn(R)' Kn(S)⊕Kn(End•R(M•)) for all n ∈ N.

Note that both M• and P• are perfect, and that Tria(P•) = Tria(RQ•) = Tria(M•). By Corollary 4.11, we
have Kn

(
End•R(M•)

)
' Kn

(
End•R(P•)

)
. Thus Kn(R)' Kn(S)⊕Kn(End•R(P•)). �

Remark 4.17. Let us give a comment on the relationship between Corollary 4.16 and [8, Theorem 1.1].
Recall that, in [8, Theorem 1.1], we describe the difference between Kn(R) and Kn(S) by the n-th algebraic
K-group of a complicial biWaldhausen category W(R,λ) defined in [19, Theorem 14.9].

Concretely, W(R,λ) is the full subcategory of C b(R-proj) consisting of all those complexes X• such that
S⊗R X• is acyclic. As a Waldhausen category, it has injective chain maps which are degreewise split as
cofibrations, and has homotopy equivalences as weak equivalences. In this sense, the cofibrations and weak
equivalences of W(R,λ) are induced from the Frobenius pair

(
W(R,λ),C b

ac(R)-proj
)
.

In [8, Theorem 1.1], it was shown that Kn(R) ' Kn(S)⊕Kn(R,λ) for all n ∈ N, where Kn(R,λ) :=
Kn(W(R,λ)). Now, we point out Kn

(
End•R(P•)

)
' Kn(R,λ) for the complex P• in Corollary 4.16.

In fact, since λ : R → S is homological, we see that Ker(S⊗L
R −) = Tria(RQ•) ⊆ D(R) by Lemma 2.3.

Note that W(R,λ) consists of all those complexes X• ∈ C b(R-proj) such that S⊗L
R X• = 0 in D(S). Thus

W(R,λ) is the same as the full subcategory of C b(R-proj) consisting of all those complexes which, regarded
as objects in D(R), belong to Tria(RQ•). Since P• ∈ C b(R-proj) and Tria(RQ•) = Tria(RP•), we know from
Corollary 4.12 that Kn

(
End•R(P•)

)
' Kn

(
W(R,λ)

)
= Kn(R,λ). �
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Finally, we give an example to illustrate that the dg algebra in Corollary 4.16 cannot be substituted by its
underlying ring (just forgetting the differential). Note that, in this example, the ring homomorphism λ : R→ S
has already been considered in [8] to illustrate [8, Theorem 1.1].

Let R be the following quiver algebra over a field k with relations

1•
α

''
•2

β

gg , αβ = βα = 0.

Further, let ei be the idempotent element of R corresponding to the vertex i for i = 1,2, and let λ : R → S
be the noncommutative localization of R at the homomorphism ϕ : Re2 → Re1 induced by α. Then S is equal
to the following quiver algebra over k with relations:

1•
α

''
•2

α−1

gg , αα
−1 = e1 and α

−1
α = e2,

and λ : R → S is given explicitly by

e1 7→ e1, e2 7→ e2, α 7→ α, β 7→ 0.

For an explanation, we refer the reader to [8]. Thus S is isomorphic to the usual 2×2 matrix ring M2(k) over
k. Note that Se2 ' Se1 ' Re1 and that S ' Se1⊕ Se2 ' Re1⊕Re1 as R-modules. Hence λ is a homological
ring epimorphism such that RS is finitely generated and projective.

In [8], we show that Kn(R) ' Kn(S)⊕Kn(R,λ) for all n ∈ N, where W(R,λ) coincides with the full
subcategory of C b(R-proj) consisting of those complexes X• such that H i(X•) ∈ add(S1) for all i ∈ Z. Here
S1 denotes the simple R-module corresponding to the vertex 1.

Now, we follow Corollary 4.16 and Remark 4.17 to describe Kn(R,λ) as the Kn-group of a dg algebra.
Let

Q• := 0 −→ Re2
ϕ−→ Re1 −→ 0 and P• := 0 −→ R λ−→ S −→ 0

where Re2 and R are of degree 0. Clearly, Q• ∈ C b(R-proj) and P•[1] is the mapping cone of λ. Since
Se2 ' Se1 ' Re1 as R-modules, we infer that Q• ' P• in C (R) and Tria(Q•) = Tria(RP•)⊆D(R). Thus all
the assumptions of Corollary 4.16 are satisfied. It follows from Corollary 4.16 that

Kn(R)' Kn(S)⊕Kn(T) for all n ∈ N,

where T := End•R(Q•) is the dg endomorphism algebra of the complex Q• (see Subsection 2.1 for definition).
By Remark 4.17, we also have Kn(R,λ)' Kn(T) for all n ∈ N.

It is easy to check that the dg algebra T := (T i)i∈Z is given by the following data:

T−1 = k, T 0 = k⊕ k, T 1 = k,T i = 0 for i 6=−1,0,1,

with the differential:

0 −→ T−1 0−→ T 0 ( 1
−1)−→ T 1 −→ 0

and the multiplication ◦ : T×T→ T (see Subsection 2.1):

T−1 ◦T−1 = T 1 ◦T 1 = 0 = T−1 ◦T 1 = T 1 ◦T−1,

(a,b)◦ (c,d) = (ac,bd), f ◦ (a,b) = f a, (a,b)◦ f = b f , g◦ (a,b) = gb, (a,b)◦g = ag,

where (a,b),(c,d) ∈ T 0, f ∈ T−1 and g ∈ T 1.
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Since H1(T) = 0, the dg algebra T is quasi-isomorphic to the following dg algebra τ≤0(T) over k:

0 −→ T−1 0−→ Ker(d0)−→ 0

where d0 =
(

1
−1

)
: T 0 → T 1. Clearly, the latter algebra is isomorphic to the dg algebra

A := 0 −→ k 0−→ k −→ 0

where the first k is of degree −1 and has a k-k-bimodule structure via multiplication. Thus the algebra
structure of A (by forgetting its differential) is precisely the trivial extension k n k of k by the bimodule k.
Now, by Lemma 4.9, we know that

K(T) ∼−→ K(τ≤0(T)) ∼−→ K(A)

as K-theory spaces. This implies that Kn(T)' Kn(A), and therefore Kn(R,λ)' Kn(A). Thus

Kn(R)' Kn(S)⊕Kn(T)' Kn(S)⊕Kn(A) for all n ∈ N.

It is worth noting that we cannot replace the dg algebra A in the above isomorphism by the trivial extension
k nk since the algebraic K-theory of dg algebras is different from that of usual rings. In fact, in this example,
K1(R) = K1(k)⊕K1(k) = k× ⊕ k×, K1(S) = k× and K1(A) = k×, but K1(k n k) = k⊕ k×. So K1(R) 6'
K1(S)⊕K1(k n k).

4.4 Proofs of Theorem 1.1 and Corollary 1.2

With previous preparations, now we prove the first two results in the introduction.
Proof of Theorem 1.1.
We regard the ordinary ring R as a dg algebra R concentrated in degree 0. Then C (R) is exactly the

category of dg R-modules, and D(R) coincides with D(R). Moreover, by Lemma 4.5, K(R) is homotopy
equivalent to K(R) as K-theory spaces, and therefore Kn(R) ' Kn(R) for all n ∈ N. Note that a complex
X ∈D(R) is compact if and only if X is quasi-isomorphic to a complex Y ∈ C b(R-proj).

Now, we assume that there exists a recollement

D(S)
i∗ // D(R) //

ff

i∗
xx

D(T )
ff

j!
xx

such that i∗(S) is compact in D(R). On the one hand, the dg module j!(T ) is always compact in D(R) by
Lemma 2.2 (3). On the other hand, we see that D(R) = Tria

(
j!(T )⊕ i∗(S)

)
, and that

HomD(R)( j!(T ), i∗(S)[m])' HomD(R)(i
∗ j!(T ),S[m]) = 0

for each m ∈ Z because (i∗, i∗) is an adjoint pair and i∗ j! = 0. Recall that each compact object of D(R) is
isomorphic in D(R) to a perfect dg R-module. So, there exist two perfect dg R-modules M and N such that
M ' j!(T ) and N ' i∗(S) in D(R). Consequently, we have Tria(M⊕N) = D(R) and HomD(R)(M,N[m]) = 0
for all m ∈ Z. It follows from Proposition 4.14 that

Kn(R)' Kn
(
End•R(M)

)
⊕Kn

(
End•R(N)

)
for all n ∈ N.

Next, we claim that

(1) Hm(
End•R(M)

)
'

{
0 if m 6= 0,
T if m = 0,

and that (2) Hm(
End•R(N)

)
'

{
0 if m 6= 0,
S if m = 0.
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In fact, since RM is perfect, it has the property (P). This implies that

Hm(
End•R(M)

)
= HomK (R)(M,M[m])' HomD(R)(M,M[m]).

As j! : D(T )→D(R) is fully faithful, we have

HomD(R)(M,M[m])' HomD(R)( j!(T ), j!(T )[m])' HomD(T )(T,T [m])'
{

0 if m 6= 0,
T if m = 0.

Thus (1) holds. Similarly, we can show that (2) also holds since RN is perfect and i∗ : D(S)→D(R) is fully
faithful.

Now, by Corollary 4.9, it follows from (1) and (2) that Kn
(
End•R(M)

)
' Kn(T ) and Kn

(
End•R(N)

)
'

Kn(S), respectively. Thus Kn(R)' Kn(R)' Kn(S)⊕Kn(T ) for each n ∈ N. �

We remark that the proof of Theorem 1.1 shows a little bit more: If D(R) in Theorem 1.1 is replaced by
D(R) with R a dg algebra, then Kn(R)' Kn(S)⊕Kn(T ).

Proof of Corollary 1.2.
Note that i∗(S) = S and that RS is quasi-isomorphic to a bounded complex of finitely generated projective

R-modules if and only if RS admits a finite-type resolution. So, for the recollement in Corollary 1.2, if RS
has a finite-type resolution, then it follows from Theorem 1.1 that Kn(R) ' Kn(S)⊕Kn(T ) for each n ∈ N.
Similarly, we can prove Corollary 1.2 for the case that SR has a finite-type resolution. In fact, this can
be understood from Lemma 2.4 and the following fact: For any ring A, there is a homotopy equivalence
K(A) ∼−→ K(Aop) (see [26, Sections 1 (3) and 2 (5)]). Thus Corollary 1.2 follows. �.

5 Applications to algebraic K-theory of homological exact contexts

In this section, we apply our results to algebraic K-theory of exact contexts (see [6]). We mainly concentrate
on two classes of exact contexts, one is induced from noncommutative localizations, and the other is from
the free products of groups.

5.1 K-theory of noncommutative localizations

First, we recall some results about noncommutative localizations in algebraic K-theory (see [24, 23]).
Let Σ a set of homomorphisms between finitely generated projective R-modules. By abuse of notation,

we always identify each map P1
f−→ P0 in Σ with the two-term complex 0 → P1

f−→ P0 → 0 in C b(R-proj),
where Pi is in the degree −i for i = 0,1. Moreover, let λΣ : R → RΣ be the noncommutative localization of R
at Σ. Note that the terminology “noncommutative localization” was originally called “universal localization”
in the literature (for example, see [28, Part I, 4]). Moreover, λΣ is a ring epimorphism with TorR

1 (RΣ,RΣ) = 0.
Now, we recall from [24, Definition 0.4]the definition of a small Waldhausen category R. Precisely, the

category R is the smallest full subcategory of C b(R-proj) which
(i) contains all the complexes in Σ,
(ii) contains all acyclic complexes,
(iii) is closed under the formation of mapping cones and shifts,
(iv) contains any direct summands of any of its objects.
We remark that, in R, the cofibrations are injective chain maps which are degreewise split, and the weak

equivalences are homotopy equivalences. So, the cofibrations and weak equivalences of R are exactly induced
from the Frobenius pair

(
R,C b

ac(R)-proj
)
. Following Remark 4.17, let W(R,λΣ) be the full subcategory of

C b(R-proj) consisting of all those complexes X• such that RΣ ⊗R X• is acyclic. Then R = W(R,λΣ) as
Waldhausen categories by the proof of [8, Corollary 1.2].

The following result follows from [24, Theorem 0.5].
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Lemma 5.1. If λΣ : R → RΣ is homological, then there is a weak homotopy fibration of K-theory spaces:

K(R)
K(F) // K(R)

K(λΣ) // K(RΣ)

where F : R → C b(R-proj) is the inclusion. In this case, we have a long exact sequence of K-groups:

· · · −→ Kn+1(RΣ)−→ Kn(R)
Kn(F) // Kn(R)

Kn(λΣ) // Kn(RΣ)−→ Kn−1(R)−→

·· · −→ K0(R)−→ K0(R)−→ K0(RΣ)

for all n ∈ N.

One of the significant methods for calculating K-groups is to have a kind of long Mayer-Vietoris se-
quences which link K-groups of rings together. In the following, we shall establish some long exact sequences
of this type, which are induced from homological exact contexts introduced in [6].

We follow all the notations introduced in Section 1.
Let (λ,µ,M,m) be an arbitrary but fixed exact context, where λ : R → S and µ : R → T are ring homo-

morphisms, and where M is an S-T -bimodule with an element m. Then there is map γ : S⊗R T →M, defined
by s⊗ t 7→ smt for s ∈ S and t ∈ T . Also, by the definition of exact context, there is a map β : M → T ⊗R S
which makes the following diagram commutative:

R
(λ,µ) // S⊕T

( ·m
−m·) // M

β

��
R

(λ,µ) // S⊕T

(
ρ

−φ

)
// T ⊗R S

where ρ = µ⊗ S : S → T ⊗R S, s 7→ 1⊗ s and φ = T ⊗λ : T → T ⊗R S, t 7→ t ⊗ 1. In [9], we use γβ as
a twisting to define a ring structure on T ⊗R S, called the noncommutative tensor product of (λ,µ,M,m) and
denoted T �R S (see [9, Section 4.1] for details).

Define

B :=
(

S M
0 T

)
, e1 :=

(
1 0
0 0

)
and e2 :=

(
0 0
0 1

)
∈ B.

Then, by [6, Lemma 5.1], the noncommutative localization of B at the map:

ϕ : Be1 −→ Be2 :
(

s
0

)
7→

(
sm
0

)
for s ∈ S,

is given by the following ring homomorphism:

θ : B =
(

S M
0 T

)  ρ β

0 φ


−→

(
T �R S T �R S
T �R S T �R S

)
= C.

Furthermore, let P• be the complex

0 → Be1
ϕ−→ Be2 → 0

over B with Be1 and Be2 in degrees −1 and 0, respectively. Note that Be1 and Be2 are also right R-modules
via λ and µ, respectively, and that the map ·m : S → M is a homomorphism of S-R-bimodules. Thus ϕ is
actually a homomorphism of B-R-bimodules, and therefore P• is a bounded complex over B⊗Z Rop. Since
BP• ∈ C b(B-proj), it makes sense to discuss the tensor functor P•⊗•

R− : C b(R-proj)→ C b(B-proj).
Let W(B,θ) be the full subcategory of C b(B-proj) consisting of those complexes X• such that C⊗B X• is

acyclic. As a Waldhausen category, W(B,θ) is exactly induced from the Frobenius pair
(
W(B,θ),C b

ac(B)-proj
)
.

Now, we regard W(B,θ) as a Frobenius subcategory of C b(B-proj), and define Kn(B,θ) := Kn
(
W(B,θ)

)
.
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Lemma 5.2. The functor P•⊗•
R − : C b(R-proj) → C b(B-proj) induces a homotopy equivalence from K(R)

to K
(
W(B,θ)

)
.

Proof. We first claim that the functor P•⊗•
R− : C (R-proj)→ C (B-proj) factorizes through the inclusion

W(B,θ) ↪→ C b(B-proj).
In fact, since θ is the noncommutative localization of B at ϕ, the map C⊗B ϕ : C⊗B Be1 → C⊗B Be2

is an isomorphism of C-modules. This implies that the complex C⊗P• is acyclic. Thus P• ∈ W(B,θ) and
P•⊗R− : C b(R-proj)−→ C b(B-proj) admits a factorisation as follows:

C b(R-proj) G−→ W(B,θ) ↪→ C b(B-proj).

Note that W(B,θ) is a Frobenius subcategory of C b(R-proj) such that its derived category DF(W(B,θ)) is
equal to the full subcategory of K b(B-proj) consisting of all objects of W(B,θ). In this sense, G is a map of
Frobenius pairs.

Next, we show that the map K(G) : K(R)→ K
(
W(B,θ)

)
induced from G is a homotopy equivalence.

Actually, by [6, Lemma 5.4], the left-derived functor P•⊗L
R − : D(R) → D(B) is fully faithful. This

induces a triangle equivalence
D(R) '−→ Tria(P•)

which restricts to an equivalence between full subcategories of compact objects:

Dc(R) '−→ Tria(P•)c.

Since D(B) = Tria(B) and P• ∈Dc(B), we see from [22, Theorem 4.4.9] that Tria(P•)c = Tria(P•)∩Dc(B).
Further, by [23, Theorem 0.11], the category Tria(P•)c coincides with the full subcategory of Dc(B) consist-
ing of all those complexes X• such that C⊗L

B X• = 0 in D(C). Now, we identify K b(R-proj) and K b(B-proj)
with Dc(R) and Dc(B) up to triangle equivalences, respectively. Then P•⊗R− : K b(R-proj)→K b(B-proj)
induces a triangle equivalence

DF(G) : DF(C b(R-proj)) = K b(R-proj) '−→DF(W(B,θ)).

By Lemma 3.1 (2), the map K(G) : K(R)→ K
(
W(B,θ)

)
is a homotopy equivalence. �

As a preparation for the proof of Theorem 1.3, we need the following result (see [6, Theorem 1.1]).

Lemma 5.3. Let (λ,µ,M,m) be a homological exact context. Then the ring homomorphism θ : B →C is a
homological noncommutative localization, and there is a recollement of derived module categories:

D(C)
D(θ∗) // D(B)

j!
//

ff

C⊗L
B−

xx
D(R)

ff

j!
xx

where D(θ∗) is the restriction functor induced by θ, and where

j! = BP•⊗L
R − and j! = Hom•

B(P•,−).

For homological exact contexts, we can establish the following result, which links K-theory spaces of
rings involved in exact contexts together.

Lemma 5.4. Let (λ,µ,M,m) be a homological exact context. Then the sequence of K-theory spaces:

K(R)

(
−K(λ),K(µ)

)
// K(S)×K(T )

(
K(ρ)
K(φ)

)
// K(T �R S)

is a weak homotopy fibration, where −K(λ) denotes the map K(S[1]⊗•
R−) : K(R)→ K(S) induced from the

functor S[1]⊗•
R− : C b(R-proj)→ C b(S-proj).
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Proof. By the proof of Lemma 5.2, we have a factorisation of the functor P• ⊗R − : C b(R-proj) →
C b(B-proj) as

C b(R-proj) G−→ W(B,θ) F−→ C b(B-proj)

such that K(G) : K(R) → K
(
W(B,θ)

)
is a homotopy equivalence, where F : W(B,θ) → C b(B-proj) is the

inclusion. Since (λ,µ,M,m) is a homological exact context, the ring homomorphism θ : B →C is a homo-
logical noncommutative localization by Lemma 5.3. Then, it follows from Lemma 5.1 that there is a weak
homotopy fibration:

K
(
W(B,θ)

) K(F)−→ K(B)
K(θ)−→ K(C).

Next, we simplify K(B) and K(C) up to homotopy equivalence.
Indeed, let i : S×T → B be the inclusion and let j : B → S×T = B/M be the projection. Since B is a

triangular matrix ring with S and T in the diagonal, it is known that the ring homomorphisms i and j induce
inverse homotopy equivalences:

K(i) : K(S)×K(T ) ∼−→ K(B) and K( j) : K(B) ∼−→ K(S)×K(T ).

For a proof of this result using Waldhausen K-theory, one may refer to the proof of [30, Proposition 5.7 (iv)],
where the additivity theorem for Quillen K-theory (see [37, Proposition 1.3.2 (4)]) was applied. Note that the
isomorphisms Kn(B)' Kn(S)⊕Kn(T ) were first obtained by Berrick and Keating (see [2]).

Now, we define e :=
(

1 0
0 0

)
∈ C and Λ := T �R S. Since the functor eC⊗C − : C-proj → Λ-proj is

an equivalence of categories, we see that K(eC⊗C −) : K(C) ∼−→ K(Λ). Moreover, there are the following
natural isomorphisms of exact functors:(

B/M⊗B−
)(

P•⊗R−
) '−→

(
S[1]⊗R−, T ⊗R−

)
: C b(R-proj)−→ C b(S-proj)×C b(T -proj),(

eC⊗B−
)(

C⊗B−
)(

B⊗(S×T )−
) '−→

(
Λ⊗S−

)
⊕

(
Λ⊗T −

)
: S-proj×T -proj −→ Λ-proj.

With the above preparations, we can construct the following commutative diagram of K-theory spaces
(up to homotopy equivalence):

K
(
W(B,θ)

) K(F) // K(B)

K( j)
��

K(θ) // K(C)

oK(eC⊗C−)
��

K(R)

K(G) o

OO (
−K(λ),K(µ)

)
// K(S)×K(T )

K(ρ)×K(φ)

((PPPPPPPPPPPP

K(i)

YY

(
K(ρ)
K(φ)

)
// K(Λ)

K(Λ)×K(Λ)

K(⊕)
88qqqqqqqqqq

where K(⊕) is the map induced from the coproduct functor ⊕ : Λ-proj×Λ-proj→Λ-proj. Note that the first
row is a weak homotopy fibration. This means that the second row is also a weak homotopy fibration. Thus
the proof is completed. �

As a byproduct of Lemma 5.4, we have the following corollary, which says that, although the multipli-
cation of the noncommutative tensor product T �R S of a homological exact context (λ,µ,M,m) depends on
the pair (M,m), the loop space of the K-theory space of T �R S is independent of the pair (M,m), up to
homotopy equivalence. For definitions of loop spaces and homotopy fibres, we refer the reader to Section 3.1
for details.
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Corollary 5.5. Let (λ,µ,M,m) be a homological exact context. Then the loop space Ω
(
K(T �R S)

)
of the

K-theory space K(T �R S) is homotopy equivalent to the homotopy fibre of the map(
−K(λ), K(µ)

)
: K(R)−→ K(S)×K(T ).

Proof of Theorem 1.3.
(1) Note that the long exact sequence of K-groups in (1) is exactly the one of homotopy groups (see

Section 3.1) induced from the weak homotopy fibration in Lemma 5.4.
(2) Recall that we have a recollement of derived module categories described in Lemma 5.3. Due to

Corollary 1.2, in order to show (2), it is sufficient to prove that BC (respectively, CB) has a finite-type resolu-
tion if and only if so is RS (respectively, TR).

In fact, BC has a finite-type resolution if and only if BC ∈ Dc(B). Applying Lemma 2.2 (3) to the
recollement in Lemma 5.3, we see that D(θ∗)(C) = BC ∈Dc(B)) if and only if j!(B) ∈Dc(R). However,

j!(B) = Hom•
B(P•,B)'

(
S⊕Con(λ)

)
[−1] ∈D(R)

where Con(λ) stands for the two-term complex 0 → R λ−→ S → 0 with R of degree −1. This implies that
j!(B) ∈ Dc(R) if and only if RS ∈ Dc(R), while the latter is equivalent to saying that RS has a finite-type
resolution. Thus BC has a finite-type resolution if and only if so is RS.

Note that, for the ring homomorphisms µop : Rop → T op and λop : Rop → Sop of opposite rings, the quadru-
ple (µop,λop,T op MSop ,m) is also a homological exact context. In a similar way, we can show that CB has a
finite-type resolution if and only if so is TR . �

Proof of Corollary 1.4.
Since (i1, i2) is an exact pair, we know from [6, Remark 5.2] that R2 �R R1 is isomorphic to the coproduct

R1tR R2. We can check, however, that R1tR R2 is isomorphic to R′ (see also [7, Lemma 2.3]). Thus Corollary
1.4 follows immediately from Theorem 1.3 (1). �.

Proof of Corollary 1.5.
Let λ : R → S be the inclusion, π : S → S/R the canonical surjection and λ′ : R → S′ the induced map

by right multiplication. Recall from [6, Section 3] that the quadruple
(
λ,λ′,HomR(S,S/R),π

)
is an exact

context. So the noncommutative tensor product S′�R S of this exact context is well defined. Assume that RS
is finitely generated and projective. Then TorR

i (S′,S) = 0 for all i ≥ 1. This means that this exact context is
homological. Now, Corollary 1.5 follows from Theorem 1.3 (2). �

As a consequence of Theorem 1.3 (1), we reobtain the following result of Karoubi [39, Chapter V, Propo-
sition 7.5 (2)].

Corollary 5.6. Let A and B be arbitrary rings, and let f : A → B be a ring homomorphism and Φ a central
multiplicatively closed set of nonzerodivisors in A such that the image of Φ under f is a central set of
nonzerodivisors in B. Assume that f induces a ring isomorphism A/sA '−→ B/sB for each s ∈ Φ. Then there
is a Mayer-Vietoris sequence

· · · −→ Kn+1(Φ−1B)−→ Kn(A)−→ Kn(Φ−1A)⊕Kn(B)−→ Kn(Φ−1B)−→ Kn−1(A)−→

·· · −→ K0(A)−→ K0(Φ−1A)⊕K0(B)−→ K0(Φ−1B)

for all n ∈ N, where Φ−1A stands for the localization of A at Φ.

Proof. Define R := A, S := Φ−1A, T := B and µ := f . Let λ : R → S be the canonical map of the
localization. By [4, Lemma 6.2], we have StR T = Φ−1B, which is defined by the canonical maps ρ :
Φ−1A→Φ−1B and φ : B→Φ−1B. Since Φ and (Φ) f do not contain zerodivisors, both λ and φ are injective.
As the modules AΦ−1A and BΦ−1B are flat, both λ and φ are homological ring epimorphisms.
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Now, we claim that (λ,µ) is an exact pair. To show this, we first prove that the following well-defined
map

h : Φ
−1A⊗A B −→ Φ

−1B, a/s⊗b 7→ ((a f )b)/(s f )

for a ∈ A, s ∈Φ and b ∈ B, is an isomorphism of Φ−1A-B-bimodules. In fact, since Φ−1A = lim−→
s∈Φ

s−1A, where

s−1A := {a/s | a ∈ A} ⊆ Φ−1A, we have

Φ
−1A⊗A B = (lim−→

s∈Φ

s−1A)⊗A B '−→ lim−→
s∈Φ

(s−1A⊗A B) '−→ lim−→
s∈Φ

(s f )−1B = Φ
−1B.

Next, we show that the cokernels of λ and φ are isomorphic as A-modules. Actually,

Φ
−1A/A = (lim−→

s∈Φ

s−1A)/A '−→ lim−→
s∈Φ

(s−1A/A) '−→ lim−→
s∈Φ

(A/sA).

Similarly, Φ−1B/B '−→ lim−→
s∈Φ

(B/sB). Since A/sA '−→ B/sB for each s∈Φ, the map f induces an isomorphism

of A-modules: Φ−1A/A '−→ Φ−1B/B, that is, Coker(λ)' Coker(φ).
Finally, we point out that the map λ′ : B → Φ−1A⊗A B, defined by b 7→ 1⊗b for b ∈ B, is injective and

that Coker(λ)' Coker(λ′). This is due to the equality φ = λ′h.
Thus

0 −→ A
(−λ,µ)−→ Φ

−1A⊕ B

(
µ ′
λ ′

)
−→ Φ

−1A⊗A B −→ 0

is an exact sequence of A-modules, where µ′ : Φ−1A→Φ−1A⊗A B is defined by x 7→ x⊗1 for x ∈Φ−1A. By
definition, the pair (λ,µ) is exact.

Since Φ consists of central, nonzerodivisor elements in A, the A-module Φ−1A is flat. This implies that
TorA

i (B,Φ−1A) = 0 for all i > 0, and therefore Corollary 5.6 follows from Theorem 1.3 (1) immediately. �

5.2 K-theory of free products of groups

Finally, we apply Theorem 1.3 to algebraic K-theory of group rings. As a preparation, we first recall some
definitions and results from [38, 6] about pure extensions.

Recall that an extension R⊆C of rings is called pure if there exists a spliting C = R⊕X of R-R-bimodules.
The actual splitting is not part of the data, just its existence. In general, the R-R-bimodule X may not be
unique. For example, for a group G, the canonical embedding R⊆ RG is pure. In this case, X has two natural
choices. One is the free R-submodule of RG generated by the nonidentity elements of G. The other is the
kernel of the canonical surjective ring homomorphism

δG : RG −→ R, ∑
g∈G

rgg 7→∑
g

rg

where rg ∈ R. The latter motivates the following definition. A pure extension R⊆C is said to be strictly pure
if the R-R-bimodule X is even a C-C-bimodule. In other words, X is an ideal of C such that the composite of
the inclusion R →C with the canonical surjection C →C/X is the identity map.

Pure extensions were originally used by Waldhausen to study algebraic K-theory of generalized free
products in [38]. Now we briefly recall some of the results there.

Let α : R →C and β : R → D be two pure extensions of rings. We denote by CtR D the coproduct of α

and β in the category of R-rings. In [38], coproducts of rings were called generalized free products. Note that
α and β give rise to a map (

K(α),−K(β)
)

: K(R)−→ K(C)×K(D)
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of K-theory spaces, where −K(β) denotes the map K(D[1]⊗•
R−) : K(R)→ K(D) induced from the functor

D[1]⊗•
R− : C b(R-proj)→ C b(D-proj). Since K([1]) : K(R)→ K(R) is a homotopy equivalence and a homo-

topy inverse of K(R) (see the statements at the end of Subsection 3.2), we see that both
(
K(α),−K(β)

)
and(

−K(α),K(β)
)

have the same homotopy fibre up to homotopy equivalence.
Further, we fix two split decompositions of R-R-bimodules:

C = R⊕X and D = R⊕Y.

In order to describe the K-theory space of the coproduct CtR D, Waldhausen introduced a topological
space K̃Nil(R,X ,Y ) in [38], of which the homotopy type depends only on the ring R and the R-bimodules X
and Y . For the original definition of K̃Nil(R,X ,Y ), we refer to [38, Page 217]; for further explanations of this
space, one may find in [29, Section 2.4] and [11, Section 0.2]. The n-th algebraic K-group of K̃Nil(R,X ,Y ),
usually called the n-th reduced Nilgroup, will be simply denoted by Ñiln(R,X ,Y ).

Lemma 5.7. [38, Theorem 1 and Theorem 4] Suppose that X and Y are free right R-modules. Then the loop
space Ω

(
K(CtR D)

)
of the K-theory space of the ring CtR D is the direct product, up to homotopy, of the

space K̃Nil(R,X ,Y ) and of the homotopy fibre of the map
(
K(α),−K(β)

)
. Moreover, if the ring R is regular

coherent, then the space K̃Nil(R,X ,Y ) is contractible.

From the first part of Lemma 5.7, we obtain the following Mayer-Vietoris exact sequence of K-groups:

· · · → Kn(R)⊕ Ñiln(R,X ,Y )→ Kn(C)⊕Kn(D)→ Kn(CtR D)→ Kn−1(R)⊕ Ñiln−1(R,X ,Y )→

··· → K1(R)⊕ Ñil1(R,X ,Y )→ K1(C)⊕K1(D)→ K1(CtR D)→ K0(R)⊕ Ñil0(R,X ,Y )→ K0(C)⊕K0(D)

where Kn(CtR D)→ Ñiln−1(R,X ,Y ) is a split surjection for n ≥ 1.

Now, let us reveal how the homotopy fibre of the map
(
K(α),−K(β)

)
can be related to noncommutative

tension products when α and β are strictly pure. This is based on a construction of exact contexts in [6,
Section 4.2.2].

Assume that α and β are strictly pure. Then the pair (α,β) can be completed into an exact context in
the following way: Let M = R⊕X ⊕Y , the direct sum of abelian groups. We endow M with the following
multiplication:

(r1 + x1 + y1)(r2 + x2 + y2) := r1r2 +(r1x2 + x1r2 + x1x2)+(r1y2 + y1r2 + y1y2)

for ri ∈ R, xi ∈ X and yi ∈Y with i = 1,2. Under this multiplication, M is a ring with identity 1, and contains
both C and D as subrings. Moreover, the quadruple (α,β,M,1) is an exact context. Now, we identify the
noncommutative tensor product D�R C with R⊕X ⊕Y ⊕Y ⊗R X as R-R-bimodules. Then the multiplication
of D�R C is given by (

r1 + x1 + y1 + y3⊗ x3
)
◦
(
r2 + x2 + y2 + y4⊗ x4

)
= r1r2 +(r1x2 + x1r2 + x1x2)+(r1y2 + y1r2 + y1y2)+

(
y1⊗ x2 + y3⊗ (x3r2)+(r1y4)⊗ x4 +(y1y4)⊗ x4 + y3⊗ (x3x2)

)
.

where r1,r2 ∈ R, xi ∈ X and yi ∈ Y for 1 ≤ i ≤ 4.
Note that (α,β,M,1) is homological if and only if TorR

i (Y,X) = 0 for all i≥ 1. In particular, (α,β,M,1) is
homological if YR or RX is free. In this case, by Corollary 5.5, the homotopy fibre of the map

(
−K(α),K(β)

)
:

K(R) → K(C)×K(D) (and thus also the map
(
K(α),−K(β)

)
) is homotopy equivalent to the loop space

Ω
(
K(D �R C)

)
. So, the following result follows immediately from Lemma 5.7, Corollary 5.5 and the fact

that CtR D ' DtR C as rings.
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Corollary 5.8. Let α : R → C and β : R → D be strictly pure such that X and Y are free right R-modules.
Then the following hold:

(1) There is a homotopy equivalence:

Ω
(
K(CtR D)

) ∼−→ K̃Nil(R,X ,Y )×Ω
(
K(D�R C)

)
.

In particular, Kn(CtR D)' Ñiln−1(R,X ,Y )⊕Kn(D�R C) for n ≥ 1.
(2) If R is regular coherent, then there are homotopy equivalences:

Ω
(
K(CtR D)

) ∼−→ Ω
(
K(D�R C)

) ∼−→ Ω
(
K(C �R D)

)
.

In particular, Kn(CtR D)' Kn(D�R C)' Kn(C �R D) for n ≥ 1.

Now, let us consider pure extensions from group rings. Suppose that H and G are two groups. Let RH and
RG be the group rings of H and G over R, respectively. We take C := RG and D := RH. Let α and β be the
canonical inclusions. Then α and β are strictly pure. Let X and Y be the kernels of the ring homomorphisms
δG : RG → R and δH : RH → R, respectively. Then RG = R⊕X and RH = R⊕Y as R-R-bimodules. Note
that Y and X are free R-modules with R-basis {h−1 | h ∈H \{eH}} and {g−1 | g ∈G\{eG}}, respectively,
where eG denotes the identity of the group G. In this case, the multiplication of the ring RH �R RG is exactly
the one defined in Section 1. We leave checking the details to the reader. Note that the construction of
RH �R RG still makes sense if both H and G are semigroups with identity element.

Proof of Corollary 1.6.
Let G be the category of groups, and let R be the category of R-rings. Recall that an R-ring is a ring U

with identity and a ring homomorphism from R to U preserving identity. The group ring functor

R(−) : G −→R, G 7→ RG for G ∈ G

is left adjoint to the functor which sends an R-ring to its group of invertible elements. So the functor R(−)
preserves coproducts. Since the group H ∗G is the coproduct of H and G in the category G , we see that
R(H ∗G) is the coproduct of RH and RG in the category R. Thus R(H ∗G) = RH tR RG. Now, Corollary
1.6 follows from Corollary 5.8 (2). �

Finally, we apply Corollary 1.6 to fundamental groups of topological spaces.
Let U be a topological space which is the union of two open and path connected subspaces U1 and

U2. Suppose that V := U1 ∩U2 is path connected and nonempty. Let x ∈ V be a point. We consider the
fundamental groups π1(U),π1(U1),π1(U2) and π1(V ) of U , U1, U2 and V at x. By the Seifert-van Kampen
theorem, the diagram of fundamental groups

π1(V ) //

��

π1(U1)

��
π1(U2) // π1(U)

is a pushout in the category of groups. Let R(π1(U)) be the group ring of π1(U) over the ring R.
As a consequence of Corollary 1.6, we have the following result.

Corollary 5.9. Let R be a regular coherent ring (for example, the ring Z of integers). Suppose that π1(V ) is
trivial. Then

Kn
(
R(π1(U))

)
' Kn

(
R(π1(U2))�R R(π1(U1))

)
' Kn

(
R(π1(U1))�R R(π1(U2))

)
for all n ≥ 1.
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Remark 5.10. Corollaries 1.6, 5.8 and 5.9 can be applied to some cases considered in [29, 11]. For example,
for an arbitrary ring R, we have

Kn
(
R(D∞)

)
' Kn(RZ2 �R RZ2)⊕ Ñiln−1(R),

where Z2 is the group of order 2. In fact, we know that D∞ = Z2 ∗Z2 and R(Z2 ∗Z2) = RZ2 tR RZ2.
It follows from Corollary 5.8(1) that Kn

(
R(D∞)

)
' Kn(RZ2 �R RZ2)⊕ Ñiln−1(R,R,R) for n ≥ 1. Note

that Ñil∗(R,R,R) ' Ñil∗(R) by [11, Corollary 3.27 (1)], where the reduced Nilgroups Ñil∗(R) appears
in algebraic K-groups of the polynomial ring R[x] with one variable x: K∗(R[x]) ' K∗(R)⊕ Ñil∗−1(R).
Thus Kn

(
R(D∞)

)
' Kn(RZ2 �R RZ2)⊕ Ñiln−1(R), as desired. This is different from the decomposition:

Kn
(
R(D∞)

)
'

(
Kn(RZ2)⊕Kn(RZ2)

)
/Kn(R)⊕ Ñiln−1(R), given in [11, Corollary 3.27 (2)].

We have considered strictly pure extensions in this section by using exact contexts. Now we mention the
following open question for arbitrary pure extensions.

Question. Let α : R →C and β : R → D be pure extensions such that X and Y are free right R-modules.
How can one describe the homotopy fibre of the map

(
K(α),−K(β)

)
: K(R) → K(C)×K(D) in terms of

algebraic K-theory space of a ring?
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