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Recollements of derived categories III: finitistic dimensions

Hong Xing Chen and Chang Chang Xi

Abstract

We study homological dimensions of algebras linked by recollements of derived module categories,
and establish a series of new upper bounds and relationships among their finitistic, big finitistic
and global dimensions. This is closely related to a long-standing conjecture, the finitistic
dimension conjecture, in representation theory and homological algebra. Further, we apply
our results to a series of situations of particular interest: exact contexts, ring extensions,
trivial extensions, pullbacks of rings, and algebras induced from Auslander–Reiten sequences.
In particular, we not only extend and amplify Happel’s reduction techniques for finitistic
dimension conjecture to more general contexts, but also generalize some recent results in the
literature.
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1. Introduction

Recollements of triangulated categories have been introduced by Beilinson, Bernstein and
Deligne in order to decompose derived categories of sheaves into two parts, an open and a
closed one (see [4]), and thus providing a natural habitat for Grothendieck’s six functors.
Similarly, recollements of derived module categories can be seen as short exact sequences,
describing a derived module category in terms of a subcategory and of a quotient, both
of which may be derived module categories themselves, related by six functors that in
general are not known. It turns out that recollements provide a very useful framework
for understanding connections among three algebraic or geometric objects in which one is
interested.

In a series of papers on recollements of derived module categories, we have been addressing
basic questions about recollements and rings involved. Our starting point has been infinite-
dimensional tilting theory (see [5]). While Happel’s theorem establishes a derived equivalence
between a given ring and the endomorphism ring of a finitely generated tilting module (see
[9, 14]), Bazzoni has shown that for a large tilting module one gets instead a recollement
relating three triangulated categories, with two of them being the derived categories of the
given ring and the endomorphism ring of the large tilting module. In [5] we have addressed
the question of determining the third category in this recollement as a derived category
of a ring and have explained this ring in terms of universal localizations in the sense of
Cohn (see [11, 17] for definition). Among the applications has been a counterexample to
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the Jordan–Hölder problem for derived module categories. In [6] we have dealt with the
problem of constructing recollements in order to relate rings. Our main construction, of exact
contexts, can be seen as a far-reaching generalization of pullbacks of rings. In [7] we have
used this construction to relate algebraic K-theory of different rings. It turned out that under
mild assumptions, the K-theory of an algebra can be fully decomposed under a sequence of
recollements.

For cohomology and for homological invariants of algebras, such a complete decomposition is
not possible. Nevertheless, results by Happel in [15] for the case of bounded derived categories
(when fewer recollements exist than in the unbounded case) show that finiteness of finitistic
dimension of an algebra can be reduced along a recollement; if such an invariant is finite for
the two outer terms, then it is finite for the middle term, too. Note that the particular values
of these invariants depend on the ring and are not invariants of the derived category. The
present paper aims at extending Happel’s reduction techniques for homological conjectures.
As in Happel’s paper [15] we will focus on finitistic dimensions which include finite global
dimensions as a special case.

Recall that the finitistic dimension (respectively, the big finitistic dimension) of a ring R,
denoted by fin.dim(R) (respectively, Fin.dim(R)), is by definition the supremum of projective
dimensions of those left R-modules having a finite projective resolution by finitely generated
(respectively, arbitrary) projective R-modules. Clearly, fin.dim(R) � Fin.dim(R). Usually, they
are quite different (see [23]). The well-known finitistic dimension conjecture states that any
Artin algebra has finite finitistic dimension (see, for instance, [2, conjecture (11), p. 410]). This
conjecture is a long-standing question [3] and has still not been settled. It is closely related
to at least seven other major conjectures in the homological representation theory of algebras
(see [2, p. 409–410]).

There are two main directions in this article. First, we provide reduction techniques
for homological invariants of unbounded derived module categories, that is, for the most
general possible setup (which also has been covered in the preceding articles in this series).
The first main result, Theorem 1.1, establishes several inequalities for finitistic and big
finitistic dimensions of different rings involved in a recollement of derived module categories.
Consequently, we have a criterion for the finiteness of finitistic dimension for each of the
three rings in terms of the ones of the other two (see Corollary 3.11). This criterion aims
to be applicable by putting conditions on particular objects, not on the whole category.
Second, we give a series of applications of our reduction techniques. In particular, the second
main result, Theorem 1.2, applies the first main result to the general contexts of the so-
called exact contexts introduced in [6], and in addition provides upper and lower bounds for
the finitistic dimensions of the three rings involved. A series of corollaries then applies the
general results to classes of examples of particular interest, such as ring extensions, trivial
extensions, quotient rings and the endomorphism rings of modules related by an almost split
sequence.

To describe explicit bounds for finitistic dimensions, we introduce homological widths (or
cowidth) of complexes that are quasi-isomorphic to bounded complexes of projective (or
injective) modules (see Section 3.1 for details). Broadly speaking, the homological width
(respectively, cowidth) defines a map from homotopy equivalence classes of bounded complexes
of projective (respectively, injective) modules to the natural numbers. It measures, up to
homotopy equivalence, how large the minimal interval of such a complex is in which its non-zero
terms are distributed. Particularly, if a module has finite projective (or injective) dimension,
then its homological width (or cowidth) is exactly the projective (or injective) dimension. For
a complex X•, we denote the homological width and cowidth of X• by w(X•) and cw(X•),
respectively.
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Theorem 1.1. Let R1, R2 and R3 be rings with identity. Suppose that there exists
a recollement among the derived module categories D(R3), D(R2) and D(R1) of R3, R2

and R1:

Then the following hold true.

(1) Suppose that j! restricts to a functor Db(R3) → Db(R2) of bounded derived
module categories. Then fin.dim(R3) � fin.dim(R2) + cw(j!(HomZ(R2,Q/Z))) (respectively,
Fin.dim(R3) � Fin.dim(R2) + cw(j!(HomZ(R2,Q/Z)))).

(2) Suppose that i∗(R1) is isomorphic in D(R2) to a bounded complex of finitely generated
(respectively, arbitrary) projective R2-modules. Then

(a) fin.dim(R1) � fin.dim(R2) + w(i∗(R2)) (respectively, Fin.dim(R1) � Fin.dim(R2) +
w(i∗(R2))),
(b) fin.dim(R2) � fin.dim(R1) + fin.dim(R3) + w(i∗(R1)) + w(j!(R3)) + 1 (respectively,
Fin.dim(R2) � Fin.dim(R1) + Fin.dim(R3) + w(i∗(R1)) + w(j!(R3)) + 1).

Note that the assumption of Theorem 1.1 on unbounded derived module categories is weaker
than the one on bounded derived module categories, because the existence of recollements of
bounded derived module categories implies the one of unbounded derived module categories.
This is shown by a recent investigation on recollements at different levels in [1, 16]. So,
Theorem 1.1 (see also Corollary 3.13) generalizes the main result in [15] since for a recollement
of Db(Rj-mod) with Rj a finite-dimensional algebra over a field for 1 � j � 3, one can always
deduce that i∗(R1) is compact in D(R2). Moreover, Theorem 1.1 extends and amplifies a
result in [22] because we deal with arbitrary rings instead of Artin algebras, and also yields
a generalization of a result in [19] for left coherent rings to the one for arbitrary rings (see
Corollary 3.9 below).

Note that, in [15], one of the key arguments in the proof is that a finite-dimensional algebra
has only finitely many non-isomorphic simple modules, while in our general context we do
not have this fact and therefore must avoid this kind of arguments. So, the idea of proving
Theorem 1.1 will be completely different from the one in both [15] and [22]. Moreover, our
methods also lead to results on upper bounds for global dimensions. For details, we refer the
reader to Theorem 3.17.

Now, we apply Theorem 1.1 to recollements constructed in [6] and establish relationships
among finitistic dimensions of noncommutative tensor products and related rings. First of all,
we recall some notions from [6].

Let R, S and T be rings with identity, and let λ : R → S and μ : R → T be ring
homomorphisms. Suppose that M is an S-T -bimodule together with an element m ∈ M . We
say that the quadruple (λ, μ,M,m) is an exact context if the following sequence

0 −→ R
(λ, μ)−→ S ⊕ T

( ·m
−m · )−→ M −→ 0

is an exact sequence of abelian groups, where ·m and m· denote the right and left multiplication
by m maps, respectively. There is a list of examples in [6] that guarantees the ubiquity of exact
contexts.

Given an exact context (λ, μ,M,m), there is defined a ring with identity in [6], called the
noncommutative tensor product of (λ, μ,M,m) and denoted by T �R S if the meaning of the
exact context is clear. This notion not only generalizes usual tensor products over commutative
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rings and captures coproducts of rings, but also plays a key role in describing the left parts of
recollements induced from homological exact contexts (see [6, Theorem 1.1]).

For an R-module RX, we denote by flat.dim(RX) and proj.dim(RX) the flat and projective
dimensions of X, respectively.

Theorem 1.2. Let (λ, μ,M,m) be an exact context with the noncommutative tensor
product T �R S. Then

(1) fin.dim(R) � fin.dim(S) + fin.dim(T ) + max{1,flat.dim(TR)} + 1;
(2) suppose TorRi (T, S) = 0 for all i � 1. If the left R-module RS has a finite projective

resolution by finitely generated projective modules, then
(a) fin.dim(T �R S) � fin.dim(S) + fin.dim(T ) + 1,
(b) fin.dim(S) � fin.dim( S M

0 T )� fin.dim(R) + fin.dim(T �R S)+
max{1,proj.dim(RS)}+ 3.

Note that for the triangular matrix algebra B := ( S M
0 T ), it is known that fin.dim(B) �

fin.dim(S) + fin.dim(T ) + 1. But Theorem 1.2(2)(b) provides us with a new upper bound for
the finitistic dimension of B in terms of fin.dim(T �R S) and fin.dim(R), involving the starting
ring R, but without information on fin.dim(S) and fin.dim(T ). This is non-trivial and somewhat
surprising. Moreover, in Theorem 1.2(2), if λ : R → S is a homological ring epimorphism, then
we even obtain better estimations: fin.dim(S) � fin.dim(R) and fin.dim(T �R S) � fin.dim(T ).
In this case, T �R S can be interpreted as the coproduct S �R T of the R-rings of S and T .

Theorem 1.2 can be applied to many cases. First, we apply it to ring extensions. This is of
particular interest because the finitistic dimension conjecture can be reformulated over perfect
fields in terms of ring extensions (see [21]). In this case, we get Corollary 3.18 where we do not
impose any conditions on the radicals of rings, compared with results in [20, 21].

Next, we apply Theorem 1.2 to trivial extensions and pullback squares of rings. In these
cases, we get Corollaries 3.19 and 3.20. Here, the strategy of the proofs is to show first that
special exact contexts can be constructed, and then Theorem 1.2 is employed by verifying the
Tor-vanishing condition. At last, noncommutative tensor products for these cases have to be
described more substantially.

As another application of Theorem 1.2, we consider the finitistic dimensions of algebras
arising from idempotent ideals and almost split sequences, see Corollary 3.16 for details.

The paper is sketched as follows: In Section 2, we first recall some necessary definitions and
then prove two results on coproducts of rings. In Section 3, we provide proofs of all results in
this paper. Especially, we introduce homological widths of complexes and deduce consequences
of Theorems 1.1 and 1.2. Moreover, the methods developed in this section can also be used to
obtain similar upper bounds for global dimension (see Theorem 3.17).

2. Definitions and conventions

In this section, we fix notation and briefly recall some definitions. For unexplained ones, we
refer the reader to [6, 7].

Throughout the paper, all notations and terminologies are standard. For example, by a ring
we mean an associative ring with identity. For a ring R, we denote by R-Mod the category
of all left R-modules, and by C (R), K (R) and D(R) the unbounded complex, homotopy and
derived categories of R-Mod, respectively. As usual, by adding a superscript ∗ ∈ {−,+, b}, we
denote their corresponding ∗-bounded categories, for instance, Db(R) is the bounded derived
category of R-Mod. The full subcategory of compact objects in D(R) is denoted by Dc(R).
This category is also called the perfect derived module category of R. It is known that the
localization functor K (R) → D(R) induces a triangle equivalence from the homotopy category
of bounded complexes of finitely generated projective R-modules to Dc(R).
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As usual, we write a complex in C (R) as X• = (Xi, diX•)i∈Z
, where diX• : Xi → Xi+1 is

called the ith differential of X•. Sometimes, for simplicity, we also write (Xi)i∈Z
for X• without

mentioning diX• . Given a chain map f• : X• → Y • in C (R), its mapping cone is denoted by
Con(f•). For an integer n, the nth cohomology of X• is denoted by Hn(X•). Let sup (X•) and
inf (X•) be the supremum and minimum of indices i ∈ Z such that Hi(X•) �= 0, respectively.
If X• is acyclic, that is, Hi(X•) = 0 for all i ∈ Z, then we understand that sup(X•) = −∞ and
inf(X•) = +∞. If X• is not acyclic, then inf(X•) � sup(X•), and Hn(X•) = 0 if sup (X•) is
an integer and n > sup (X•) or if inf (X•) is an integer and n < inf (X•). For a complex X• in
C (R), if Hn(X•) = 0 for almost all n, then X• is isomorphic in D(R) to a bounded complex.
So, Db(R) is equivalent to the full subcategory of D(R) consisting of all complexes with finitely
many nonzero cohomologies.

As a convention, we write the composite of two homomorphisms f : X → Y and g : Y → Z
in R-Mod as fg. Thus the image of an element x ∈ X under f will be written on the opposite
of the scalars as (x)f instead of f(x). This convention makes HomR(X,Y ) naturally into an
EndR(X)-EndR(Y )-bimodule. But, for two functors F : X → Y and G : Y → Z of categories,
we write GF : X → Z for their composition.

Now we recall the notion of recollements of triangulated categories, which was defined by
Beilinson, Bernstein and Deligne in [4] to study derived categories of perverse sheaves over
singular spaces. It may be thought as a kind of categorifications of exact sequences in abelian
categories.

Definition 2.1. Let D, D′ and D′′ be triangulated categories. We say that D is a recollement
of D′ and D′′ if there are six triangle functors among the three categories:

such that

(1) (i∗, i∗), (i!, i!), (j!, j!) and (j∗, j∗) are adjoint pairs,
(2) i∗, j∗ and j! are fully faithful functors,
(3) j!i! = 0 (and thus also i!j∗ = 0 and i∗j! = 0), and
(4) for each object X ∈ D, there are two triangles in D induced by counit and unit

adjunctions:

i!i
!(X) −→ X −→ j∗j∗(X) −→ i!i

!(X)[1],

j!j
!(X) −→ X −→ i∗i∗(X) −→ j!j

!(X)[1],

where the shift functor of triangulated categories is denoted by [1].

By a half recollement of triangulated categories among D′, D and D′′, we mean that a
quadruple (i∗, i∗, j!, j!) of functors satisfying the parts of properties (1)–(4) above which concern
them.

Recall that if λ1 : R0 → R1 and λ2 : R0 → R2 are ring homomorphisms (thus making R1 and
R2 into R0-rings), then the coproduct of the corresponding R0-rings, denoted R1 �R0 R2, is
just the pushout of λ1 and λ2 in the category of rings. For the general definition and existence
of coproducts of R0-rings, we refer to [10].

In the following we describe coproducts of rings for two cases in terms of some known
constructions. The first one is for trivial extensions, and the second one is for quotient rings.

Given a ring R and an R-R-bimodule M , the trivial extension of R by M is a ring,
denoted by R � M , with the underlying abelian group R⊕M and the multiplication:
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(r,m)(r′,m′) = (rr′, rm′ + mr′) for r, r′ ∈ R and m,m′ ∈ M . For further information on
R � M , we refer the reader to [12].

Lemma 2.2. Suppose that λ : R → S is a ring epimorphism and M is an S-S-bimodule. Let
λ̃ : R � M → S � M be the ring homomorphism induced by λ and let μ : R → R � M be the
canonical inclusion. Then the coproduct S �R (R � M) of λ and μ is isomorphic to S � M .

Proof. Let ρ : S → S � M be the canonical inclusion. Note that S and R � M are R-rings
via λ and μ, respectively, and that λρ = μ λ̃ : R → S � M . To prove that S � M , together
with ρ and λ̃, is the coproduct of S and R � M over R, we suppose that Λ is an arbitrary
ring and that f : R � M → Λ and g : S → Λ are arbitrary ring homomorphisms such that
λ g = μ f = f |R. Then f is determined by the ring homomorphism f1 = λg : R → Λ and a
homomorphism f2 : M → Λ of R-R-bimodules such that ((M)f2)2 = 0 in Λ. The fact that
λ is a ring epimorphism implies that f2 is also a homomorphism of S-S-bimodules, so that
h : S � M → Λ, given by (s,m)h = (s)g + (m)f2 for s ∈ S and m ∈ M , is a well-defined ring
homomorphism, which is the unique one such that h|S = g and λ̃h = f . �

Lemma 2.3. Let R0 be a ring, and let Ri be an R0-ring with ring homomorphism λi :R0 →Ri

for i = 1, 2.

(1) If λ1 : R0 → R1 is a ring epimorphism, then so is the canonical homomorphism
ρ2 : R2 → R1 �R0 R2.

(2) Let I be an ideal of R0, and let J be the ideal of R2 generated by the image (I)λ2 of
I under the map λ2. If R1 = R0/I and λ1 : R0 → R1 is the canonical surjective map, then
R1 �R0 R2 = R2/J .

Proof. (1) Follows from the fact that in any category the opposite of an epimorphism in a
pushout diagram is also an epimorphism.

(2) Let ρ2 : R2 → R2/J be the canonical surjection, and let ρ1 : R1 → R2/J be the
ring homomorphism induced by λ2 since J = R2 (I)λ2 R2 ⊇ (I)λ2. Now, we claim that
R2/J together with ρ1 and ρ2 is the coproduct of R1 and R2 over R0. Clearly, λ1 ρ1 =
λ2ρ2 : R0 → R2/J . Further, assume that τ1 : R1 → S and τ2 : R2 → S are two ring homo-
morphisms such that λ2τ2 = λ1τ1. Then (I)λ2τ2 = (I)λ1τ1 = 0, and therefore (J)τ2 = 0.
This means that there is a unique ring homomorphism δ : R2/J → S such that τ2 = ρ2δ.
It follows that λ1τ1 = λ2τ2 = λ2ρ2δ = λ1ρ1δ. Since λ1 is surjective, τ1 = ρ1δ. This shows
R1 �R0 R2 = R2/J . �

3. Proofs of the main results

This section is devoted to proofs of all results mentioned in the introduction. We start with
introducing the so-called homological widths for complexes, and then prove Theorem 1.1
and deduce its corollaries. As a major consequence of Theorem 1.1, we get a proof of
Theorem 1.2 and then apply Theorem 1.2 to trivial extensions, pullback rings, ring extensions,
idempotent ideals and almost split sequences. Also, we present a result on global dimension
(see Theorem 3.17).

3.1. Homological widths and cowidths of complexes

As a generalization of finite projective or injective dimensions of modules, we define, in this
subsection, homological widths and cowidths for bounded complexes of projective and injective
modules, respectively.
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Let R be a ring. For an R-module M , we denote by proj.dim(M), inj.dim(M) and
flat.dim(M) the projective, injective and flat dimension of M , respectively. As usual, R-Proj
is the category of all projective left R-modules, and R-proj is the full subcategory of R-Proj
consisting of all finitely generated projective left R-modules. By P<∞(R) we denote the full
subcategory of R-mod consisting of those R-modules admitting a finite projective resolution
with finitely generated terms.

Let P • := (Pn, dnP•)n∈Z
∈ C b(R-Proj). We define the homological width of P • in the

following way:

w(P •) :=

{
0 if P • is acyclic,
sup(P •) − inf(P •) + proj.dim

(
Cok(d inf(P•)−1

P• )
)

otherwise.

Clearly, 0 � w(P •) < ∞. Moreover, P • is isomorphic in K b(R-Proj) to a complex

Q• : 0 −→ Qt−p dt−p

−→ Qt−p+1 dt−p+1
−→ · · · −→ Qt−1 dt−1

−→ Qt −→ P t+1
dt+1
P•−→ · · · −→ P s−1

ds−1
P•−→ Ker(dsP• ) −→ 0

with s := sup(P •), t := inf(P •), p := proj.dim(Cok(dt−1
P• )) and each term being projective.

Clearly, the sequence

0 −→ Qt−p dt−p

−→ Qt−p+1 dt−p+1

−→ · · · −→ Qt−1 dt−1

−→ Qt −→ Cok(dt−1
P• ) −→ 0

is a projective resolution of the R-module Cok(dt−1
P• ). Note that if P • ∈ C b(R-proj), we can

choose Q• ∈ C b(R-proj).
Remark that the homological widths of complexes defined here are different from cohomo-

logical widths in [13].
The following result says that homological widths of bounded complexes of projective

modules are preserved under homotopy equivalences.

Lemma 3.1. Let M• and N• be in C b(R-Proj). If M• 
 N• in K b(R-Proj), then w(M•) =
w(N•).

Proof. Recall that K b(R-Proj) is the stable category of the Frobenius category C b(R-Proj)
with projective objects being acyclic complexes. Assume M• 
 N• in K b(R-Proj). Then there
exist two acyclic complexes P • and Q• in C b(R-Proj) such that M• ⊕ P • 
 N• ⊕Q• in
C b(R-Proj). This implies that Hi(M•) 
 Hi(N•) and Cok(diM•) ⊕ Cok(diP•) 
 Cok(diN•) ⊕
Cok(diQ•) for all i ∈ Z. Thus sup(M•) = sup(N•) and inf(M•) = inf(N•). Moreover, since
Cok(diP•) and Cok(diQ•) belong to R-Proj, proj.dim(Cok(diM•)) = proj.dim(Cok(diN•)). It
follows that w(M•) = w(N•). �

Thanks to Lemma 3.1, the definition of homological widths for complexes can be extended
slightly to derived categories in the following sense: Given a complex X• ∈ D(R), if there is a
complex P • ∈ C b(R-Proj) such that X• 
 P • in D(R), then we define w(X•) := w(P •). This
is well defined: If there exists another complex Q• ∈ C b(R-Proj) such that X• 
 Q• in D(R),
then P • 
 Q• in K b(R-Proj) and w(P •) = w(Q•) by Lemma 3.1. So, for such a complex X•,
its homological width w(X•) can be characterized as follows:

w(X•) = min
{
αP• − βP• � 0

∣∣∣∣P • 
 X• in D(R) for P • ∈ C b(R-Proj)
with P i = 0 for i < βP• and i > αP•

}
.

Clearly, if X ∈ R-Mod has finite projective dimension, then w(X) = proj.dim(X).
Dually, we can define homological cowidths for bounded complexes of injective R-modules.



640 HONG XING CHEN AND CHANG CHANG XI

Let R-Inj denote the category of injective R-modules. Given a complex I• := (In, dnI•)n∈Z ∈
C b(R-Inj), we define the homological cowidth of I• as follows:

cw(I•) :=

{
0 if I• is acyclic,
sup(I•) − inf(I•) + inj.dim

(
Ker(d sup(I•)

I• )
)

otherwise.

Similarly, if a complex Y • is isomorphic in D(R) to a bounded complex I• ∈ C b(R-Inj), then
we define cw(Y •) := cw(I•). In particular, if Y ∈ R-Mod has finite injective dimension, then
cw(Y ) = inj.dim(Y ). Also, we have the following characterization of cw(Y •):

cw(Y •) = min
{
αI• − βI• � 0

∣∣∣∣ I• 
 Y • in D(R) for I• ∈ C b(R-Inj)
with Ii = 0 for i < βI• and i > αI•

}
.

Homological widths and cowidths will be used to bound homological dimensions in the next
section.

3.2. Proofs and applications of Theorem 1.1

Recall that the finitistic dimension of a ring R, denoted by fin.dim(R), is defined by

fin.dim(R) := sup{proj.dim(RX) | X ∈ P<∞(R)}.
For each n ∈ Z, we define

Dc
�n(R) := {X• ∈ Dc(R) | X• 
 P • in Dc(R) with P • ∈ C b(R-proj)

such that P i = 0 for all i < n}.
From this definition, we have Dc

�n(R) ⊆ Dc
�n′(R) whenever n � n′. Since the localization

functor K (R) → D(R) induces a triangle equivalence K b(R-proj) �−→ Dc(R), we have

Dc(R) =
⋃
n∈Z

Dc
�n(R).

Clearly, if fin.dim(R) = m < ∞, then P<∞(R) ⊆ Dc
�−m(R). For the convenience of the later

discussions, we also formally set Dc
�−∞(R) := Dc(R) and Dc

�+∞(R) := {0}.

Lemma 3.2. Let m,n ∈ N. Then the following statements are true.

(1) The full subcategory Dc
�n(R) of Dc(R) is closed under direct summands in Dc(R).

(2) Let X• ∈ Dc
�n(R), Z• ∈ Dc

�m(R) and s = min {n,m}. Then, for any distinguished
triangle X• → Y • → Z• → X•[1] in Dc(R), we have Y • ∈ Dc

�s(R).

Proof. (1) Let M• ∈ K b(R-proj), and let N• := (N i)i∈Z ∈ K b(R-proj) such that N i = 0
for all i < n. Suppose that M• is a direct summand of N• in K b(R-proj), or equivalently, there
is a complex L• ∈ C b(R-proj) such that M• ⊕ L• 
 N• in K b(R-proj). Hence Hi(M•) = 0 for
all i < n. Note that K b(R-proj) is the stable category of the Frobenius category C b(R-proj)
with projective objects being acyclic complexes. So we can find two acyclic complexes U• and
V • in C b(R-proj) such that M• ⊕ L• ⊕ U• 
 N• ⊕ V • in C b(R-proj). This implies

Cok(dn−1
M• ) ⊕ Cok(dn−1

L• ) ⊕ Cok(dn−1
U• ) 
 Cok(dn−1

N• ) ⊕ Cok(dn−1
V • ) = Nn ⊕ Cok(dn−1

V • ).

Since Nn ⊕ Cok(dn−1
V • ) ∈ R-proj, we have Cok(dn−1

M• ) ∈ R-proj. It follows that M• is isomorphic
in K b(R-proj) to the following truncated complex

0 −→ Cok(dn−1
M• ) −→ Mn+1 −→ Mn+2 −→ · · · −→ 0.

Recall that the localization functor K (R) → D(R) induces a triangle equivalence
K b(R-proj) �−→ Dc(R). Thus (1) follows.
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(2) Since X• ∈ Dc
�n(R), there exists a complex P • ∈ C b(R-proj) with P i = 0 for i < n such

that X• 
 P • in Dc(R). Similarly, there exists another complex Q• ∈ C b(R-proj) with Qi = 0
for i < m such that Z• 
 Q• in Dc(R). It follows from the triangle equivalence K b(R-proj) �−→
Dc(R) that

HomK b(R-proj)(Q
•[−1], P •) 
 HomDc(R)(Q•[−1], P •) 
 HomDc(R)(Z•[−1], X•).

Thus the given triangle yields a distinguished triangle in Dc(R):

Q•[−1]
f•
−→ P • −→ Y • −→ Q•

with f• a chain map in C (R). Then Y • 
 Con(f•) in Dc(R). Since Con(f•)i = Qi ⊕ P i for
any i ∈ Z, Con(f•) ∈ C b(R-proj) and Con(f•)i = 0 for i < s. This implies Y • ∈ Dc

�s(R). �

To investigate relationships among finitistic dimensions of rings in recollements, it may be
convenient to introduce the notion of finitistic dimensions of functors.

Let R1 and R2 be arbitrary rings. Suppose that X1 and X2 are full subcategories of D(R1)
and D(R2), respectively. For a given additive functor F : X1 → X2, we define

inf (F ) := inf{n ∈ Z | Hn(F (X)) �= 0 for some X ∈ R1-Mod} if R1-Mod ⊆ X1,

fin.dim(F ) := inf{n ∈ Z | Hn(F (X)) �= 0 for some X ∈ P<∞(R1)} if P<∞(R1) ⊆ X1.

Note that inf(F ) = +∞ if and only if F (X) = 0 in D(R2) for all X ∈ R1-Mod. In fact, if
there exits some X ∈ R1-Mod such that Hn(F (X)) �= 0 for some integer n, then inf(F ) � n.
Moreover, by definition, inf(F ) � fin.dim(F ), and fin.dim(F ) ∈ Z ∪ {−∞,+∞}.

Lemma 3.3. Let F : D(R1) → D(R2) be a triangle functor. Then the following statements
are true.

(1) If F has a left adjoint L : D(R2) → D(R1) with L(R2) ∈ D−(R1), then inf(F ) �
− sup (L(R2)).

(2) If F has a right adjoint G : D(R2) → D(R1), then F can be restricted to a functor
Db(R1) → Db(R2) if and only if G(HomZ(R2,Q/Z)) is isomorphic in D(R1) to a bounded
complex I• of injective R1-modules. In this case, inf(F ) � −(m + inj.dim(Ker(dmI•))), where
m := sup(I•) and dmI• : Im → Im+1 is the mth differential of I•.

Proof. (1) For each n ∈ Z and M ∈ R1-Mod,

Hn(F (M)) 
 HomD(R2)(R2, F (M)[n]) 
 HomD(R1)(L(R2),M [n]).

Since L(R2) ∈ D−(R1), we have s := sup(L(R2)) < +∞. Recall that the localization functor
K (R1) → D(R1) induces a triangle equivalence K −(R1-Proj) �−→ D−(R1). So there is a
complex P • := (P j)j∈Z ∈ C−(R1-Proj) with P j = 0 for all j > s such that P • 
 L(R2) in
D(R1). It follows that

Hn(F (M)) 
 HomD(R1)(L(R2),M [n]) 
 HomD(R1)(P
•,M [n]) 
 HomK (R1)(P

•,M [n]) = 0

for all n < −s. Thus inf(F ) � −s.
(2) To calculate cohomologies of complexes, we consider the exact functor

(−)∨ := HomZ(−,Q/Z) : Z-Mod −→ Z-Mod.
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A Z-module U is zero if and only if so is U∨ because Q/Z is an injective cogenerator for Z-Mod.
Let X• ∈ D(R2). Then

H0(X•)
∨

= HomZ(H0(X•),Q/Z) 
 HomK (Z)(X•,Q/Z) 
 HomK (Z)(R2 ⊗R2 X
•,Q/Z)


 HomK (R2)(X
•, R2

∨).

Since R2
∨ is an injective R2-module, HomK (R2)(X

•, R2
∨) 
 HomD(R2)(X

•, R2
∨). Thus

H0(X•)
∨ 
 HomD(R2)(X

•, R2
∨).

Now, let M ∈ R1-Mod and n ∈ Z. Then Hn(F (M))∨ 
 HomD(R2)

(
F (M)[n], R2

∨). Since (F,G)
is an adjoint pair,

HomD(R2)

(
F (M)[n], R2

∨) 
 HomD(R1)(M [n], G(R2
∨)
)
.

This implies that Hn(F (M)) = 0 if and only if HomD(R1)(M [n], G(R2
∨)
)

= 0.
Let W • = G(R2

∨). To check the sufficiency of (2), it is enough to show
HomD(R1)(M [n],W •) = 0 for almost all n. In fact, if W • is isomorphic in D(R1) to a bounded
complex I• of injective R1-modules, then

HomD(R1)(M [n],W •) 
 HomD(R1)(M [n], I•
) 
 HomK (R1)(M [n], I•

)
= 0

for almost all n.
In the following, we will show the necessity of (2). Suppose that F can be restricted to a

functor Db(R1) → Db(R2). We first claim Hn(W •) = 0 for almost all n, that is, W • ∈ Db(R1).
Actually, we have the following isomorphisms of abelian groups:

Hn(W •) 
 HomD(R1)(R1, G(R∨
2 )[n]) 
 HomD(R2)(F (R1), R∨

2 [n]) 
 H−n(F (R1)).

Since F (R1) ∈ Db(R2), Hn(F (R1)) = 0 for almost all n. Thus Hn(W •) = 0 for almost all
n, that is, W • is isomorphic in Db(R1) to a bounded complex. Consequently, there exists a
lower-bounded complex I• of injective R1-modules such that I• 
 W • in D(R1). In particular,
Hn(I•) 
 Hn(W •) for all n. To complete the proof of the necessity of (2), it remains to show
that I• can be chosen to be a bounded complex.

Note that

HomD(R2)(F (M), R∨
2 [n]) 
 HomD(R1)(M,W •[n]) 
 HomD(R1)(M, I•[n])


 HomK (R1)(M, I•[n]).

As F : D(R1) → D(R2) can be restricted to a functor Db(R1) → Db(R2) by assumption, we
get F (M) ∈ Db(R2). Up to isomorphism in D(R2), we may assume F (M) ∈ C b(R2). Since R∨

2

is an injective R2-module, HomD(R2)(F (M), R∨
2 [n]) 
 HomK (R2)(F (M), R∨

2 [n]) = 0 for almost
all n. Thus HomK (R1)(M, I•[n]) = 0 for almost all n. Particularly, there is a natural number
δM (depending on M) such that HomK (R1)(M , I•[n]) = 0 for all n > δM . We may suppose
that the complex I• is of the following form:

0 −→ Is
ds

−→ Is+1 ds+1

−→ · · · −→ Im
dm

−→ Im+1 dm+1

−→ · · · −→ Ii
di

−→ Ii+1 −→ · · ·
where all terms Ii are injective and where s � m := sup(I•) and Hi(I•) = 0 for any i > m.
Let V :=

⊕
i�m Im(di). Then

HomK (R1)(V, I
•[n]) = 0 for all n > δV .

Now we define t := max {m, δV }. Then HomK (R1)(Im(dt), I•[t + 1]) = 0. This implies that the
chain map Im(dt) → I•[t + 1], induced from the inclusion Im(dt) ↪→ It+1, is homotopic to the
zero map. Therefore, the canonical surjection It � Im(dt) must split. With It then also Im(dt)
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is an injective module. Since Hi(I•) = 0 for any i > m, I• is isomorphic in D(R1) to the
following bounded complex:

0 −→ Is
ds

−→ Is+1 ds+1

−→ · · · −→ Im
dm

−→ Im+1 dm+1

−→ · · · −→ It
dt

−→ Im(dt) −→ 0

with all of its terms being injective. Thus, up to isomorphism in D(R1), we can choose I• to
be a bounded complex of injective modules. This completes the proof of the necessity of (2).

To show the last statement of (2), we note that the R1-module Ker(dm) has a finite injective
resolution since Hi(I•) = 0 for all i > m. Hence, up to isomorphism in D(R1), we can replace
I• by the following bounded complex of injective R1-modules:

0 −→ Is
ds

−→ Is+1 ds+1

−→ · · · −→ Im−1 −→ Ĩm
d̃m

−→ Ĩm+1 d̃m+1

−→ · · · −→ Ĩm+p−1 d̃m+p−1

−→ Ĩm+p −→ 0

where Ker(d̃m)= Ker(dm) and p := inj.dim(Ker(dm))� t. This implies HomK (R1)(M [n], I•) =
0 for all n < −(m + p). Since

Hn(F (M))∨ 
 HomD(R1)(M [n],W •) 
 HomD(R1)(M [n], I•) 
 HomK (R1)(M [n], I•),

we have Hn(F (M)) = 0 for all n < −(m + p). Thus inf(F ) � −(m + p). �

We remark that, in Lemma 3.3(2), the R2-module I := HomZ(R2,Q/Z) can be replaced by
any injective cogenerator of R2-Mod. This is due to the fact that G always commutes with direct
products. Recall that an R2-module M is called a cogenerator of R2-Mod if any R2-module
can be embedded into a direct product of copies of M . Clearly, I is an injective cogenerator
of R2-Mod. In case that R2 is an Artin algebra, there is another injective cogenerator, namely
D(R2) where D is the usual duality of an Artin algebra.

Lemma 3.4. Let F : Dc(R1) → Dc(R2) be a triangle functor. Suppose fin.dim(F ) = s > −∞
and fin.dim(R2) = t < ∞. Then

(1) F (P<∞(R1)) ⊆ Dc
�s−t(R2);

(2) let m ∈ Z. Then, for any X ∈ P<∞(R1) and for any Y • ∈ D(R2) with sup(Y •) � m,
we have HomD(R2)(F (X), Y •[i]) = 0 for all i > t− s + m.

Proof. Note that s = +∞ if and only if F (X) = 0 for any X ∈ P<∞(R1). In this case, both
(1) and (2) are true. Now, we assume s < +∞. Thus s is an integer.

(1) Since F (X) ∈ Dc(R2), there exists a complex Q• = (Qj , dj)j∈Z ∈ C b(R2-proj) such that
F (X) 
 Q• in Dc(R2). In particular, Hi(F (X)) 
 Hi(Q•) for all i ∈ Z. Since fin.dim(F ) =
s < ∞, we have Hi(F (X)) = 0 for all i < s. Thus Hi(Q•) = 0 for all i < s. It follows that
Y := Cok(ds−1) ∈ P<∞(R2), and therefore Q• is isomorphic in D(R2) to the following
canonical truncated complex:

0 −→ Y −→ Qs+1 ds+1

−→ Qs+2 −→ · · · −→ 0.

Since fin.dim(R2) = t < ∞, we have proj.dim(R2Y ) � t. So the R2-module Y has a finite
projective resolution:

0 −→ P s−t −→ · · · −→ P s−1 −→ P s −→ Y −→ 0

with P j ∈ R2-proj for s− t � j � s. Consequently, F (X) is isomorphic in D(R2) to the
following complex

P • : 0 −→ P s−t −→ · · · −→ P s−1 −→ P s −→ Qs+1 ds+1

−→ Qs+2 −→ · · · −→ 0.

Clearly, P • ∈ C b(R2-proj) and P i = 0 for i < s− t. This implies F (X) ∈ Dc
�s−t(R2). Hence

F (P<∞(R1)) ⊆ Dc
�s−t(R2).
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(2) Let X ∈ P<∞(R1) and Y • ∈ D(R2) with sup(Y •) � m < ∞. Then Hj(Y •) = 0 for
j > m, and therefore there exists a complex Z• ∈ C−(R2) with Zr = 0 for r > m, such
that Z• 
 Y • in D(R2). Moreover, by the proof of (1), there exists another complex P • ∈
C b(R2-proj) with P i = 0 for all i < s− t, such that P • 
 F (X) in D(R2). It follows that

HomD(R2)(F (X), Y •[i]) 
 HomD(R2)(P
•, Z•[i]) 
 HomK (R2)(P

•, Z•[i]) = 0

for all i > t− s + m. This shows (2). �

Lemma 3.5. Let F : Dc(R1) → Dc(R2) be a fully faithful triangle functor. If fin.dim(F ) = s
is an integer, then fin.dim(R1) � fin.dim(R2) − s + sup(F (R1)).

Proof. If fin.dim(R2) is infinity, then the right-hand side of the inequality is infinity and the
corollary is true. So we assume fin.dim(R2) = t < ∞. Further, we may assume R1 �= 0. Since F
is fully faithful, we have 0 �= F (R1) ∈ Dc(R2). This implies sup(F (R1)) < ∞. Moreover, it is
known that, for any X ∈ P<∞(R1), if there is a natural number n such that ExtiR1

(X,R1) = 0
for all i > n, then proj.dim(R1X) � n. So, to show fin.dim(R1) � n := t− s + sup(F (R1)) <
∞, it is enough to prove ExtiR1

(X,R1) = 0 for all X ∈ P<∞(R1) and all i > n. In fact, since
F is fully faithful,

ExtiR1
(X,R1) 
 HomD(R1)(X,R1[i]) 
 HomD(R2)(F (X), F (R1)[i]).

Due to Lemma 3.4(2), we have HomD(R2)(F (X), F (R1)[i]) = 0 for all i > n. Thus
ExtiR1

(X,R1) = 0 for all X ∈ P<∞(R1) and all i > n. �

Summarizing Lemmas 3.3 and 3.5 together, we obtain the following useful result.

Corollary 3.6. Let F : D(R1) → D(R2) be a fully faithful triangle functor such that
F (R1) ∈ Dc(R2). Then the following statements hold true.

(1) If F has a left adjoint L : D(R2) → D(R1) with L(R2) ∈ D−(R1), then fin.dim(R1) �
fin.dim(R2) + sup (L(R2)) + sup(F (R1)). If moreover L(R2) ∈ Dc(R1), then fin.dim(R1) �
fin.dim(R2) + w(L(R2)).

(2) If F has a right adjoint G : D(R2) → D(R1) and can be restricted to a functor Db(R1) →
Db(R2), then fin.dim(R1) � fin.dim(R2) + cw(G(HomZ(R2,Q/Z))).

Proof. If fin.dim(R2) is infinity, then the two statements (1) and (2) are trivially true. So,
we assume fin.dim(R2) = t < ∞ and Ri �= 0 for i = 1, 2. By assumption, F (R1) ∈ Dc(R2) , and
therefore F restricts to a functor Dc(R1) → Dc(R2). Since F is fully faithful and R1 �= 0, we
have F (R1) �= 0. This leads to fin.dim(F ) �= +∞. Thus fin.dim(F ) ∈ Z ∪ {−∞}.

(1) Since (L,F ) is an adjoint pair, Hn(F (R1)) 
 HomD(R2)(R2, F (R1)[n]) 

HomD(R1)(L(R2), R1[n]). It follows from 0 �= F (R1) ∈ D(R2) that L(R2) �= 0 in D(R1).
Since L(R2) ∈ D−(R1), we know that sup(L(R2)) is an integer. By Lemma 3.3(1),
inf(F ) � − sup(L(R2)) > −∞, and therefore fin.dim(F ) � inf(F ) > −∞. Combining this
with Lemma 3.5, we have

fin.dim(R1) � t− fin.dim(F ) + sup(F (R1)) � t + sup(L(R2)) + sup(F (R1)).

This shows the first part of (1). For the second part of (1), we only need to check w(L(R2)) =
sup (L(R2)) + sup(F (R1)).

In fact, it follows from L(R2) ∈ Dc(R1) that the homological width of L(R2) is well defined
and there exists a complex

P • : 0 −→ P r dr

−→ P r−1 −→ · · · −→ P s−1 −→ P s −→ 0
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in C b(R1-proj) with s = sup(L(R2)) and s− r = w(L(R2)) such that L(R2) 
 P • in D(R1)
(see Section 3.1). In this case, dr is not a split injection. Since (L,F ) is an adjoint pair,

HomD(R1)(P
•, R1[n]) 
 HomD(R1)(L(R2), R1[n]) 
 HomD(R2)(R2, F (R1)[n]) 
 Hn(F (R1))

for all n ∈ Z. This implies Hn(F (R1)) = 0 for all n > −r. Moreover, since the map dr is not
a split injection, HomD(R1)(P

•, P r[−r]) �= 0. Thus H−r(F (R1)) 
 HomD(R1)(P
•, R1[−r]) �= 0.

This shows sup(F (R1)) = −r. It follows that w(L(R2)) = s− r = sup (L(R2)) + sup(F (R1)).
(2) Under the assumption of (2), we see from Lemma 3.3(2) that inf(F ) � −(m +

inj.dim(Ker(dmI•))), where I• ∈ C b(R1-Inj) is defined in Lemma 3.3(2) and m := sup(I•). Thus
fin.dim(F ) � inf(F ) > −∞ and

fin.dim(R1) � t + m + inj.dim(Ker(dmI•)) + sup(F (R1)) < ∞
by Lemma 3.5. Define W • := G(HomZ(R2,Q/Z)). By the proof of Lemma 3.3(2), W • 
 I•

in D(R1) and Hn(W •) 
 H−n(F (R1) for all n ∈ Z. This implies sup(F (R1)) = − inf(W •) =
− inf(I•). Thus

cw(W •) = sup(I•) − inf(I•) + inj.dim(Ker(dmI•)) = m + sup(F (R1)) + inj.dim(Ker(dmI•)).

So fin.dim(R1) � t + cw(W •). �

As a consequence of Corollary 3.6, we have the following useful fact.

Corollary 3.7. Let P • ∈ C (R2 ⊗Z Rop
1 ) such that R2P

• ∈ Dc(R2). Assume that the
following two conditions hold:

(1) R1 
 EndD(R2)(P
•) as rings (via multiplication), and HomD(R2)(P

•, P •[n]) = 0 for all
n �= 0;

(2) P •
R1

is isomorphic in D(Rop
1 ) to a bounded complex

F • : 0 −→ F r −→ F r−1 −→ · · · −→ F s−1 −→ F s −→ 0

of flat Rop
1 -modules, where r, s ∈ Z and r � s.

Then fin.dim(R1) � fin.dim(R2) + s− r.

Proof. Let F := P • ⊗L

R1
− : D(R1) → D(R2). Then F (R1) 
 R2P

• ∈ Dc(R2) and F has a
right adjoint G := RHomR2(P

•,−) : D(R2) → D(R1). Since R2P
• ∈ Dc(R2), the functor F

restricts to a functor F ′ : Dc(R1) → Dc(R2). Note that the condition (1) implies that F ′ is
fully faithful. Further, since F commutes with direct sums and D(R1) is compactly generated
by R1, F itself is also fully faithful.

Now, we claim that F can be restricted to a functor Db(R1) → Db(R2). In fact, by
Lemma 3.3(2), this is equivalent to claiming that the complex G(HomZ(R2,Q/Z)) is isomorphic
in D(R1) to a bounded complex of injective R1-modules.

To check the latter, we use the functor (−)∨ := HomZ(−,Q/Z) and apply G to the injective
R2-module R∨

2 . Then there are the following isomorphisms in D(R1):

G(R∨
2 ) = RHomR2(P

•, R∨
2 ) = Hom•

R2
(P •, R∨

2 ) 
 Hom•
Z
(R2 ⊗R2 P

•,Q/Z) 
 (P •)∨.

Note that (−)∨ : Rop
1 -Mod → R1-Mod is an exact functor, sending flat Rop

1 -modules to injective
R1-modules. Thus the condition (2) implies that (P •)∨ is isomorphic in D(R1) to the following
bounded complex of injective R-modules:

(F •)∨ := 0 −→ (F s)∨ −→ (F s−1)∨ −→ · · · −→ (F r−1)∨ −→ (F r)∨ −→ 0,
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where (F s)∨ and (F r)∨ are of degrees −s and −r, respectively. Consequently, cw(G(R2
∨)) =

cw((P •)∨) = cw((F •)∨) � s− r. Now, it follows from Corollary 3.6(2) that

fin.dim(R1) � fin.dim(R2) + cw(G(R2
∨)) � fin.dim(R2) + s− r.

This completes the proof. �

Recall that a ring epimorphism λ : R → S is homological if and only if the restriction functor
D(λ∗) : D(S) → D(R) is fully faithful. Note that D(λ∗) always has a left adjoint functor S ⊗L

R

− : D(R) → D(S). For further information and advances on homological ring epimorphisms
phrased in terms of recollements of derived categories, we refer the reader to [6–8]. Applying
Corollary 3.6(1) to homological ring epimorphisms, we have the following result.

Corollary 3.8. Let λ : R → S be a homological ring epimorphism such that RS ∈
P<∞(R). Then fin.dim(S) � fin.dim(R).

Proof. If we take F := D(λ∗) and L := S ⊗L

R − in Corollary 3.6(1), then fin.dim(S) �
fin.dim(R) + w(L(S)). Since w(L(S)) = proj.dim(SS) = 0, fin.dim(S) � fin.dim(R). �

The following result extends [19, Theorem 1.1] on finitistic dimensions for derived
equivalences of left coherent rings to those of arbitrary rings.

Corollary 3.9. Suppose that F : D(R1) → D(R2) is a triangle equivalence. Then

|fin.dim(R1) − fin.dim(R2)| � w(F (R1)).

Proof. Suppose that G : D(R2) → D(R1) is a quasi-inverse of F . Then (G,F ) and (F,G) are
adjoint pairs. Since both F and G preserve compact objects, they can be restricted to triangle
equivalences of perfect derived categories: F : Dc(R1)

�−→ Dc(R2) and G : Dc(R2)
�−→ Dc(R1).

By Corollary 3.6(1), fin.dim(R1) � fin.dim(R2) + w(G(R2)) and fin.dim(R2) � fin.dim(R1) +
w(F (R1)). Thus, to complete the proof, it is enough to show w(G(R2)) = w(F (R1)).

In fact, up to isomorphism in derived categories, we may assume F (R1) ∈ C b(R2-proj) and
G(R2) ∈ C b(R1-proj).

Without loss of generality, we suppose that F (R1) is a complex in C b(R2-proj) of the form

0 −→ P−r d−r

−→ P−r+1 −→ · · · −→ P−1 −→ P 0 −→ 0

such that r = w(F (R1) � 0. This implies that H0(F (R1)) �= 0 and d−r is not a split injection.
Since (F,G) is an adjoint pair,

HomK (R2)(F (R1), R2[n]) 
 HomD(R2)(F (R1), R2[n]) 
 HomD(R1)(R1, G(R2)[n])


 Hn(G(R2))

for all n ∈ Z. It follows that Hi(G(R2)) = 0 for i < 0 or i > r. Further, we claim
Hr(G(R2)) �= 0, and therefore sup(G(R2)) = r. Actually, since d−r is not a split injection,
HomK (R2)(F (R1), P−r[r]) �= 0. Thus 0 �= HomK (R2)(F (R1), R2[r]) 
 Hr(G(R2)). So, up to
isomorphism in K (R1), the complex G(R2) has the following form in C b(R1-proj):

0 −→ Qs ϕs

−→ Qs+1 −→ Qs+2 −→ · · · −→ Qr−1 −→ Qr −→ 0

such that 0 � r − s = w(G(R2)). In particular, this implies that ϕs is not a split injection. So,
to show w(F (R1) = w(G(R2)), we only need to show s = 0.

Indeed, since (G,F ) is an adjoint pair,

HomK (R1)(G(R2), R1[n]) 
 HomD(R1)(G(R2), R1[n]) 
 HomD(R2)(R2, F (R1)[n])


 Hn(F (R1))
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for all n ∈ Z. On the one hand, if s < 0, then HomK (R1)(G(R2), R1[−s]) 
 H−s(F (R1)) =
0, and therefore HomK (R1)(G(R2), Qs[−s]) = 0. This means that ϕs is a split injection, a
contradiction. On the other hand, if s > 0, then 0 = HomK (R1)(G(R2), R1) 
 H0(F (R1)). This
is also a contradiction. Thus s = 0 and w(F (R1)) = w(G(R2)), as desired. �

Corollary 3.9 describes a relationship for finitistic dimensions of derived equivalent rings. If
we weaken derived equivalences into half recollements of perfect derived module categories, we
will obtain the following general result which provides a bound for the finitistic dimension of
the middle ring by those of the outer two rings.

Proposition 3.10. Suppose that there is a half recollement of perfect derived module
categories of the rings R3, R2 and R1

Then

fin.dim(R2) � fin.dim(R1) + fin.dim(R3) + w (i∗(R1)) + w (j!(R3)) + 1.

Proof. The proof will be done in several steps. We may suppose fin.dim(R1) < ∞ and
fin.dim(R3) < ∞. Clearly, if one of R1 and R3 is zero, then Proposition 3.10 follows from
Corollary 3.9. From now on, we assume R1 �= 0 �= R3.

Step 1. We claim j!j
!(P<∞(R2)) ⊆ Dc

�−u(R2), where u := fin.dim(R3) + w(j!(R3)) � 0.

Actually, since j! : Dc(R3) → Dc(R2) is fully faithful, 0 �= j!(R3) ∈ Dc(R2). This implies
sup (j!(R3)) < ∞. As (j!, j!) is an adjoint pair, one can follow the proof of Lemma 3.3(1)
to show − sup (j!(R3)) � inf(j!). Note that inf(j!) � fin.dim(j!). Thus −∞ < − sup (j!(R3)) �
fin.dim(j!) � +∞.

Define u1 := − sup (j!(R3)) − fin.dim(R3). Then u1 � fin.dim(j!) − fin.dim(R3). It follows
from Lemma 3.4(1) that

j!(P<∞(R2)) ⊆ Dc
�u1

(R3).

In other words, for any Y ∈ P<∞(R2), there exists a complex P •
Y := (Pn

Y )n∈Z ∈ C b(R3-proj)
with Pn

Y = 0 for n < u1 such that j!(Y ) 
 P •
Y in Dc(R3). Clearly, the complex P •

Y is of the
following form:

0 −→ Pu1
Y −→ Pu1+1

Y −→ Pu1+2
Y −→ · · · −→ P

s(Y )
Y −→ 0,

where s(Y ) depends on Y and u1 � s(Y ). Since j!(R3) ∈ Dc(R2) by the half recollement, j!(R3)
is isomorphic in Dc(R2) to a bounded complex L• of the form

0 −→ Lu2 −→ Lu2+1 −→ Lu2+2 −→ · · · −→ 0

such that u2 = sup(j!(R3)) − w(j!(R3)) and Li ∈ R2-proj for all i � u2 (see Section 3.1). This
implies j!(R3) ∈ Dc

�u2
(R2). Since Dc

�u2
(R2)) is closed under direct summands in Dc(R2) by

Lemma 3.2(1), j!(R3-proj) ⊆ Dc
�u2

(R2).
Note that u = fin.dim(R3) + w(j!(R3)) = fin.dim(R3) + sup (j!(R3)) − u2 = −(u1 + u2).

Now, we claim j!j
!(P<∞(R2)) ⊆ Dc

�−u(R2) = Dc
�(u1+u2)

(R2).
Actually, for the complex P •

Y ∈ C b(R3-proj), there is a canonical distinguished triangle in
Dc(R3):

P
s(Y )
Y [−s(Y )] −→ P •

Y −→ P •
Y
�s(Y )−1 −→ P

s(Y )
Y [1 − s(Y )],
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where P •
Y
�s(Y )−1 is truncated from P •

Y by replacing P
s(Y )
Y with 0, that is,

P •
Y
�u1−1 : 0 −→ Pu1

Y −→ Pu1+1
Y −→ · · · −→ P

s(Y )−1
Y −→ 0 −→ 0.

This induces a distinguished triangle in Dc(R2):

j!

(
P

s(Y )
Y

)
[−s(Y )] −→ j! (P •

Y ) −→ j!

(
P •
Y
�s(Y )−1

)
−→ j!

(
P

s(Y )
Y

)
[1 − s(Y )].

Note that j!(P
s(Y )
Y )[−s(Y )] ∈ Dc

�s(Y )+u2
(R2) ⊆ Dc

�(u1+u2)
(R2) due to u1 � s(Y ). Since P i

Y ∈
R3-proj for all u1 � i � s(Y ), one can apply Lemma 3.2(2) to show j!(P •

Y ) ∈ Dc
�(u1+u2)

(R2)
by induction on the number of non-zero terms of a complex. It follows from j!(Y ) 
 P •

Y that
j!j

!(Y ) 
 j!(P •
Y ) ∈ Dc

�(u1+u2)
(R2). This implies j!j

!(P<∞(R2)) ⊆ Dc
�(u1+u2)

(R2).

Step 2. We show i∗i∗(P<∞(R2)) ⊆ Dc
�v(R2), where v := fin.dim(R1) + w(i∗(R1)) + u + 1.

First of all, we claim that there is an integer m such that m � fin.dim(i∗) � +∞. Indeed,
the given half recollement yields the following canonical triangle

(†) j!j
!(Y )

ηY−→ Y
εY−→ i∗i∗(Y ) −→ j!j

!(Y )[1]

in D(R2), where ηY and εY stand for the counit and unit morphisms, respectively. Since
j!j

!(Y ) ∈ Dc
�−u(R2) ⊆ Dc(R2), we can find a complex U• := (Un)n∈Z ∈ C b(R2-proj) with

Un = 0 for all n < −u � 0 such that j!j
!(Y ) 
 U• in D(R2). It follows that

HomD(R2)(j!j
!(Y ), Y ) 
 HomD(R2)(U

•, Y ) 
 HomK (R2)(U
•, Y ).

So there exists a chain map f• : U• → Y such that its mapping cone V • is isomorphic to
i∗i∗(Y ) in D(R2). Clearly, V 0 = U1 ⊕ Y and V j = U j+1 for any j �= 0. In particular, V j = 0
for all j < −u− 1. Since i∗ : Dc(R1) → Dc(R2) is fully faithful,

Hn(i∗(Y )) � HomD(R1)(R1, i
∗(Y )[n]) � HomD(R2)(i∗(R1), i∗i∗(Y )[n]) � HomD(R2)(i∗(R1), V

•[n]).

By assumption, i∗(R1) ∈ Dc(R2) and therefore is isomorphic in Dc(R2) to a complex

Q• : 0 −→ Qv2 −→ Qv2+1 −→ · · · −→ Qb −→ 0

in C b(R2-proj), where b := sup(i∗(R1)) and b− v2 = w(i∗(R1)) (see Section 3.1). Let
m := −u− 1 − b. Then

Hn(i∗(Y )) 
 HomD(R2)(i∗(R1), V •[n]) 
 HomD(R2)(Q
•, V •[n]) 
 HomK (R2)(Q

•, V •[n]) = 0

for all n < m. This implies m � fin.dim(i∗) � +∞, as claimed.
Let v1 := m− fin.dim(R1). It follows from Lemma 3.4(1) that i∗(P<∞(R2)) ⊆ Dc

�v1
(R1).

Now, replacing the pair (j!, j!) in the proof of Step 1 with (i∗, i∗), one can similarly show

i∗i∗(P<∞(R2)) ⊆ Dc
�v1+v2

(R2).

Note that −(v1 + v2) = fin.dim(R1) + w(i∗(R1)) + u + 1 = v � u + 1 � 1.

Step 3. We show fin.dim(R2)� v= fin.dim(R1) + fin.dim(R3)+w(i∗(R1))+w(j!(R3))+ 1.

Since j!j!(Y ) ⊆ Dc
�−u(R2) and i∗i∗(Y ) ∈ Dc

�−v(R2) for Y ∈ P<∞(R2) with u < v, it follows
from the triangle (†) and Lemma 3.2(2) that Y ∈ Dc

�−v(R2). Now, let P • := (Pn, dn)n∈Z ∈
C b(R2-proj) such that Pn = 0 for all n < −v and Y 
 P • in Dc(R2). Since Y is an R2-module,
Hn(P •) = 0 for n �= 0 and H0(P •) 
 Y . Consequently, Ker(d0) ∈ R2-proj and the following
complex

0 −→ P−v d−v

−→ P−v+1 d−v+1

−→ · · · −→ P−1 d−1

−→ Ker(d0) −→ Y −→ 0

is exact. Thus proj.dim(R2Y ) � v and therefore fin.dim(R2) � v < ∞. �
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Proof of Theorem 1.1. We only prove Theorem 1.1 for the little finitistic dimensions, while
the proof of the statements for the big finitistic dimension is an easy adaptation of that of the
little one and left to the reader.

Note that the triangle functors j! and i∗ in a recollement always take compact objects to
compact objects and that i∗(R1) is compact if and only if j!(R2) is compact (for a reference
of this fact, one may see, for example, [7, Lemma 2.2]). Thus we have a sequence of functors:

D(R1)
i∗←− D(R2)

j!←− Dc(R3),

where the functor j! is fully faithful.
Applying Corollary 3.6(2) to the adjoint pair (j!, j!), we then obtain (1).
Suppose i∗(R1) ∈ Dc(R2). Then j!(R2) ∈ Dc(R3) and the given recollement in Theorem 1.1

induces a half recollment of perfect derived module categories:

Now, the statements (a) and (b) in (2) follow from Corollary 3.6(1) and Proposition 3.10,
respectively. This completes the proof of Theorem 1.1. �

As a consequence of Theorem 1.1, we have the following corollary.

Corollary 3.11. Let R1, R2 and R3 be rings. Suppose that there exists a recollement
among the derived module categories D(R3), D(R2) and D(R1) of R3, R2 and R1:

Then the following hold true.

(1) Suppose that j! restricts to a functor Db(R3) → Db(R2) of bounded derived module
categories. If fin.dim(R2) < ∞, then fin.dim(R3) < ∞.

(2) Suppose that i∗(R1) is a compact object in D(R2). Then we have the following:
(a) if fin.dim(R2) < ∞, then fin.dim(R1) < ∞;
(b) if fin.dim(R1) < ∞ and fin.dim(R3) < ∞, then fin.dim(R2) < ∞.

As another consequence of Theorem 1.1, we obtain the following corollary which extends the
main result [22, Theorem] on finitistic dimensions of Artin algebras to the one of arbitrary
rings.

Corollary 3.12. Let R be a ring and e an idempotent element of R. Suppose
that the canonical surjection R → R/ReR is homological with RReR ∈ P<∞(R). Then
fin.dim(R/ReR) � fin.dim(R) � fin.dim(eRe) + fin.dim(R/ReR) + proj.dim(RR/ReR) + 1.

Proof. Let J := ReR. Since the canonical surjection R → R/J is homological, there exists
a recollement of derived module categories:
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Due to RJ ∈ P<∞(R), we have D(π∗)(R/J) = R/J ∈ Dc(R) and w(R/J) = proj.dim(RR/J).
Moreover, Re⊗L

eRe eRe = Re and w(RRe) = 0. Now, Corollary 3.12 follows from Theo-
rem 1.1(2)(b) and Corollary 3.8. �

Since a recollement at Db-level induces a recollement at D-level, the following result is also
a straightforward consequence of Theorem 1.1.

Corollary 3.13. Let R1, R2 and R3 be rings. Suppose that there exists a recollement
among the derived module categories Db(R3), Db(R2) and Db(R1):

such that i∗(R1) ∈ Dc(R2). Then

fin.dim(R2) < ∞ if and only if max {fin.dim(R1),fin.dim(R3)} < ∞.

Remark that Corollary 3.13 generalizes [15, Theorem 2]. In fact, if R1, R2 and R3 are finite-
dimensional k-algebras over a field k, satisfying the assumptions in [15, Theorem 2], then there
is a recollement among D(R3), D(R2) and D(R1), which can be restricted to a recollement
among Db(R3), Db(R2) and Db(R1) such that i∗(R1) ∈ Dc(R2) by [1, Proposition 4.1,
Corollary 4.9 and Theorem 4.6]. Thus [15, Theorem 2] follows from Corollary 3.13.

The existence of a recollement at Db-level occurs in the following special case (see [16,
18]): Let R be a ring and J = ReR be an ideal generated by an idempotent element e in R
such that RJ is projective and finitely generated and that JR has finite projective dimension.
Then there exists a recollement among Db(eRe),Db(R) and Db(R/J). Remark that, without
proj.dim(JR) < ∞, we may not get a recollement at Db-level because the left-derived functor
Re⊗L

eRe − : D(eRe) → D(R) may not be restricted to a functor on bounded derived categories.
One can construct a desired counterexample from triangular matrix rings.

Applying Corollary 3.12 to triangular matrix rings, we re-obtain the following well-known
result (for example, see [12, Corollary 4.21]).

Corollary 3.14. Let R and S be rings, and let M be an S-T -bimodule. Set B := ( S M
0 T ).

Then fin.dim(S) � fin.dim(B) � fin.dim(S) + fin.dim(T ) + 1.

Recall from [8] that a morphism λ : Y → X of objects in an additive category C is said to
be covariant if the induced map HomC(X,λ) : HomC(X,Y ) → HomC(X,X) is injective, and
the induced map HomC(Y, λ) : HomC(Y, Y ) → HomC(Y,X) is a split epimorphism of EndC(Y )-
modules. Covariant morphisms capture traces of modules, which guarantee the ubiquity of
covariant morphisms (see [8]).

For covariant morphisms, we have the following result which follows from Corollary 3.12 and
[8, Lemma 3.2].

Corollary 3.15. Let f : Y → X be a covariant morphism in an additive category C. Then

fin.dim
(
EndC,Y (X)

)
� fin.dim (EndC(Y ⊕X)) � fin.dim (EndC(Y )) + fin.dim

(
EndC,Y (X)

)
+ 2,

where EndC,Y (X) is the quotient ring of the endomorphism ring EndC(X) of X modulo the
ideal generated by all those endomorphisms of X which factorize through the object Y .
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Consequently, we have the following result.

Corollary 3.16. (1) Let I be an idempotent ideal in a ring R. Then

fin.dim(R/I) � fin.dim (EndR(R⊕ I)) � fin.dim (EndR(RI)) + fin.dim(R/I) + 2.

In particular, if RI is, in addition, projective and finitely generated, then

fin.dim(R/I) � fin.dim(R) � fin.dim (EndR(RI)) + fin.dim(R/I) + 2.

(2) Let 0 → Z → Y
f−→ X → 0 be an almost split sequence in R-mod with R an Artin

algebra (see [2] for definition), such that HomR(Y, Z) = 0. Then

fin.dim (EndR(Y ⊕X)) � fin.dim (EndR(Y )) + 2.

Proof. (1) Since the inclusion I ↪→ R is a covariant homomorphism in R-Mod and
EndR,I(R) 
 R/I, the first statement in (1) follows from Corollary 3.15 immediately. The
last statement is a consequence of the fact that R is Morita equivalent to EndR(R⊕ I).

(2) Under the assumption, we know that f is a covariant map in R-mod, the cat-
egory of finitely generated R-modules. So, by Corollary 3.15, it is sufficient to show
fin.dim(EndR,Y (X)) = 0. In fact, since EndR(X) is a local algebra and since the ideal of
EndR(X) generated by all homomorphisms which factorize through Y belong to the radical
of EndR(X), the algebra EndR,Y (X) is local. Note that a local Artin algebra has finitistic
dimension 0. Therefore fin.dim(EndR,Y (X)) = 0. Now, (2) follows from Corollary 3.15. �

We point out that the methods developed in this paper for finitistic dimensions also work
for global dimensions. Recall that, for an arbitrary ring R, we denote by gl.dim(R) the global
dimensions of R. By definition, gl.dim(R) is the supremum of projective dimensions of all
left R-modules. Clearly, fin.dim(R) � Fin.dim(R) � gl.dim(R); and if gl.dim(R) < ∞, then
Fin.dim(R) = gl.dim(R). However, the equality fin.dim(R) = Fin.dim(R) does not have to
hold in general (see [23]).

Concerning global dimensions, we can describe explicitly upper bounds for the global
dimension of a ring in terms of the ones of the outer two rings involved in a recollement. These
upper bounds imply the finiteness of global dimensions mentioned in [1, Proposition 2.14].

Theorem 3.17. Let R1, R2 and R3 be rings. Suppose that there exists a recollement among
the derived module categories D(R3), D(R2) and D(R1) of R3, R2 and R1:

Then we have the following:

(1) gl.dim(R3) � gl.dim(R2) + cw(j!(HomZ(R2,Q/Z))) and gl.dim(R1) � gl.dim(R2) +
w(i∗(R2));

(2) gl.dim(R2) � gl.dim(R1) + gl.dim(R3) + w(i∗(R1)) + w(j!(R3)) + 1.

Sketch of the Proof. From [1, Proposition 2.14] and its proof, we observe the following two
facts.

(i) If gl.dim(R2) < ∞ or gl.dim(R3) < ∞, then i∗(R1) is isomorphic in D(R2) to a bounded
complex of projective R2-modules.
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(ii) gl.dim(R2) < ∞ if and only if both gl.dim(R1) < ∞ and gl.dim(R3) < ∞. In this case,
the recollement among unbounded derived categories can be restricted to a recollement of
bounded derived categories.

Moreover, for a ring R, if gl.dim(R) < ∞, then gl.dim(R) = Fin.dim(R). Now, Theorem 3.17
becomes a consequence of Theorem 1.1. �

3.3. Proofs and applications of Theorem 1.2

Now we turn to proofs of Theorem 1.2 and its consequences arising from different exact contexts.

Proof of Theorem 1.2. Given an exact context (λ, μ,M,m), we have defined its noncommu-
tative tensor product T �R S and the following two ring homomorphisms:

ρ : S → T �R S, s �→ 1 ⊗ s for s ∈ S, and φ : T → T �R S, t �→ t⊗ 1 for t ∈ T.

Note that T �R S has T ⊗R S as its underlying abelian group, while its multiplication is
different from the usual tensor product (see [6] for details). Let B := ( S M

0 T ), C := M2(T �R S)
and

θ :=
(
ρ β
0 φ

)
: B −→ C,

where β : M → T ⊗R S is the unique R-R-bimodule homomorphism such that φ = (m·)β and
ρ = (·m)β.

Let

ϕ :
(
S
0

)
−→

(
M
T

)
,

(
s
0

)
�→

(
sm
0

)
for s ∈ S.

Then ϕ is a homomorphism of B-R-bimodules. Denote by P • the mapping cone of ϕ. Then
P • ∈ C b(B ⊗Z Rop) and BP

• ∈ C b(B-proj). In particular, P • ∈ Dc(B).
By [6, Theorem 1.1], if TorRi (T, S) = 0 for all i � 1, then there is a recollement of derived

categories:

where j! := BP
• ⊗L

R −, j! := Hom•
B(P •,−) and D(θ∗) is the restriction functor induced from

the ring homomorphism θ : B → C. First of all, we have the following two easy observations.

(i) fin.dim(C) = fin.dim(T �R S) since C := M2(T �R S) is Morita equivalent to T �R S.
(ii) fin.dim(B) � fin.dim(S) + fin.dim(T ) + 1. This is well known, see also Corollary 3.14.

We first apply Corollary 3.7 to show Theorem 1.2(1). In fact, by [6, Lemma 5.4], R 

EndD(B)(P •) as rings (via multiplication) and HomD(B)(P •, P •[n]) = 0 for any n �= 0. It
remains to show that P •

R is isomorphic in D(Rop) to a bounded complex of flat Rop-modules.

Since the exact sequence 0 → R
(λ, μ)−→ S ⊕ T

( ·m
−m · )−→ M → 0 is the mapping cone in C (Rop)

of the chain map (λ,m·) from the complex Con(μ) to the complex Con(·m), we have
Con(μ) 
 Con(·m) in D(Rop), where Con(μ) is the complex 0 → R

μ−→ T → 0 with T in
degree 0. This implies P •

R 
 T ⊕ Con(·m) 
 T ⊕ Con(μ) in D(Rop). If flat.dim(TR) = ∞,
then Theorem 1.2(1) is trivially true. So we may suppose flat.dim(TR) < ∞. Let
t := max{1,flat.dim(TR)}. Then P • is isomorphic in D(Rop) to a bounded complex

F • := 0 −→ F−t −→ F−t+1 −→ · · · −→ F−1 −→ F 0 −→ 0
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such that F i is a flat Rop-module for −t � i � 0. It follows from Corollary 3.7 that fin.dim(R) �
fin.dim(B) + t � fin.dim(S) + fin.dim(T ) + t + 1. This shows Theorem 1.2(1).

Next, we shall apply Theorem 1.1 to the above recollement (�) and prove Theorem 1.2(2).
By the proof of [7, Theorem 1.3(2)], D(θ∗)(C) = BC ∈ P<∞(B) if and only if RS ∈

P<∞(R). Suppose RS ∈ P<∞(R). It follows from [6, Corollary 5.9(1)] that

proj.dim(BC) � max{2,proj.dim(RS) + 1}.
Since C ⊗L

B B 
 C in D(C), it follows from Theorem 1.1(2)(a) that fin.dim(C) � fin.dim(B).
Note that fin.dim(T �R S) = fin.dim(C) and fin.dim(B) � fin.dim(S) + fin.dim(T ) + 1. Thus
(a) holds.

As D(θ∗)(C) = BC and j!(R) 
 BP
• in D(B), we know w(P •) = 1 and

w (D(θ∗)(C)) = w(BC) = proj.dim(BC) � max{2,proj.dim(RS) + 1}.
Now, it follows from Theorem 1.1(2)(b) that

fin.dim(B) � fin.dim(R) + fin.dim(T �R S) + max{2, proj.dim(RS) + 1} + 1 + 1.

Clearly, fin.dim(S) � fin.dim(B). Thus (b) holds. �

We point out the following fact related to Theorem 1.2(2): Suppose that (λ, μ,M,m) is an
exact context with TorRi (T, S) = 0 for all i � 1. If λ : R → S is a homological ring epimorphism
such that RS ∈ P<∞(R), then fin.dim(S) � fin.dim(R) and fin.dim(T �R S) � fin.dim(T ).

In fact, in this case, the Tor-vanishing condition, that is, TorRi (T, S) = 0 for all i > 0, is
equivalent to that φ : T → T �R S is a homological ring epimorphism (see [6, Proposition 5.7]
for details). Moreover, T �R S 
 T ⊗R S as T -S-bimodules. It follows that if RS ∈ P<∞(R),
then TT �R S ∈ P<∞(T ) by the Tor-vanishing condition. Therefore the above-mentioned fact
is a consequence of Corollary 3.8.

Corollary 3.18. Suppose that S ⊆ R is an extension of rings, that is, S is a subring of R
with the same identity. Let R′ be the endomorphism ring of the S-module R/S, and let R′ �S R
be the noncommutative tensor product of the exact context determined the extension. Then

(1) fin.dim(S) � fin.dim(R) + fin.dim(R′) + max
{
1, flat.dim((R/S)S),

flat.dim(HomS(R,R/S)S)
}

+ 1;
(2) suppose that the left S-module R is projective and finitely generated. Then

(a) fin.dim(R′ �S R) � fin.dim(R) + fin.dim(R′) + 1;
(b) fin.dim(R) � fin.dim(S) + fin.dim(R′ �S R) + 4.

Proof. Let τ : S ⊆ R be the inclusion from S into R, and let π : R → R/S be the canonical
surjection. We define

σ : S −→ R′ = EndS(R/S), s �→ (r �→ rs) for s ∈ S and r ∈ R/S

to be the right multiplication map. Then the quadruple (τ, σ,HomS(R,R/S), π) determined by
the extension is an exact context (see the examples in [6, Section 3]) and its noncommutative
tensor product R′ �S R is well defined. If SR is flat, then TorSi (R′, R) = 0 for all i � 1.
Particularly, under the assumption on SR in Corollary 3.18(2), the quadruple fulfils the
Tor-vanishing condition in Theorem 1.2(2).

Now, we apply Theorem 1.2 to the exact context (τ, σ,HomS(R,R/S), π), and see that the
statements (a) and (b) in Corollary 3.18 follow from the statements (a) and (b) in Theorem 1.2,
respectively. To show Corollary 3.18(1), we shall apply Theorem 1.2(1). For this aim, we shall
prove

flat.dim(R′
S) � max {flat.dim (HomS(R,R/S)S) ,flat.dim ((R/S)S)}.
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However, this can be concluded from the following exact sequence of right R′-modules (also
right S-modules):

0 −→ R′ −→ HomS(R,R/S) −→ HomS(S,R/S) −→ 0,

which is obtained by applying HomS(−, R/S) to the exact sequence 0 → S → R → R/S → 0.
Now, the statement (1) follows from Theorem 1.2(1). �

Let λ : R → S and μ : R → T be ring homomorphisms, and let M be an S-T -bimodule with
m ∈ M . Recall that an exact context (λ, μ,M,m) is called an exact pair if M = S ⊗R T and
m = 1 ⊗ 1. In this case, we simply say that (λ, μ) is an exact pair. By [6, Corollary 4.4], if
the map λ in the exact context is a ring epimorphism, then the pair (λ, μ) is exact. Moreover,
by [6, Remark 5.2], for an exact pair (λ, μ), we have T �R S 
 S �R T , the coproduct of the
R-rings of S and T .

Corollary 3.19. Let λ : R → S be a ring epimorphism and M an S-S-bimodule such that
TorRi (M,S) = 0 for all i � 1. If RS ∈ P<∞(R), then

(a) fin.dim(S � M) � fin.dim(S) + fin.dim(R � M) + 1;
(b) fin.dim(S) � fin.dim(R) + fin.dim(S � M).

Proof. We define T := R � M , μ : R → T to be the inclusion from R into T , and λ̃ : R �

M → S � M to be the canonical map induced from λ. By Lemma 2.2, the ring S � M , together
with the inclusion ρ : S → S � M and λ̃ : T → S � M , is the coproduct of S and T over R.

Now, we show that (λ, μ) is an exact pair. Actually, the split exact sequence 0 → R
μ−→

T → M → 0 of R-R-bimodules implies RTR 
 R⊕M as R-R-bimodules. Since λ is a ring
epimorphism and M is an S-S-bimodule, the map

S ⊗R T −→ S � M, s⊗ (r,m) �→ (sr, sm)

for s ∈ S and m ∈ M , is an isomorphism of S-T -bimodules. Under this isomorphism, we
can identify the map μ ′ = idS ⊗ μ : S → S ⊗ T with the inclusion ρ : S → S � M , and the
map λ′ = λ⊗ idT : T → S ⊗R T with λ̃. Note that 0 → S

ρ−→ S � M → M → 0 is also a split
exact sequence of S-S-bimodules. It follows that Cok(μ) 
 Cok(ρ) 
 M as R-R-bimodules,
and therefore the following sequence of R-R-bimodules:

0 −→ R
(λ, μ)−→ S ⊕ T

(
ρ

−λ̃

)
−→ S � M −→ 0

is exact. This means that the pair (λ, μ) is exact.
Consequently, T �R S 
 S �R T 
 S � M as rings. Note that TorRi (T, S) 
 TorRi (R⊕

M,S) 
 TorRi (M,S) = 0 for all i � 1. Thus Corollary 3.19(a) follows immediately from
Theorem 1.2(2)(a).

Now we turn to the proof of Corollary 3.19(b).
Note that, if Theorem 1.2(2)(b) is applied to the exact pair (λ, μ), then fin.dim(S) �

fin.dim(R) + fin.dim(S � M) + max{1,proj.dim(RS)} + 3. So, to obtain the better upper
bound given in Corollary 3.19(b), we need the following statement:

(∗) Let f : Λ → Γ and g : Γ → Λ be ring homomorphisms such that fg = IdΛ. If
fin.dim(ΓΓ ⊗L

Λ −) = s < +∞, then fin.dim(Λ) � fin.dim(Γ) − s.

To show (∗), we set F := ΓΓ ⊗L

Λ − : D(Λ) → D(Γ). If fin.dim(F ) = −∞, then (∗) is auto-
matically true. So, we suppose that fin.dim(F ) = s is an integer and Λ �= 0. Since F (Λ) 

Γ �= 0, we have s � 0. Let X ∈ P<∞(Λ). Then there exists a finite projective resolution
0 → Pn → · · · → P1 → P0 → X → 0 of ΛX with all Pi in Λ-proj. Now we define Y := Ω−s

Λ (X),
the (−s)th syzygy module of ΛX (with respect to this resolution). Thus Y ∈ P<∞(Λ). It
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follows from fin.dim(F ) = s that TorΛj (Γ, Y ) = TorΛj−s(Γ, X) 
 Hs−j(F (X)) = 0 for all j > 0.
Hence Γ ⊗Λ Y ∈ P<∞(Γ) and Γ ⊗Λ Ωi

Λ(Y ) = Ωi
Γ(Γ ⊗Λ Y ) ⊕Qi for all i � 0, where all Qi

are finitely generated projective Γ-modules. Further, we may suppose fin.dim(Γ) = t < ∞.
Then proj.dim(ΓΓ ⊗Λ Y ) � t, and therefore Γ ⊗Λ Ωt

Λ(Y ) = Ωt
Γ(Γ ⊗Λ Y ) ⊕Qt ∈ Γ-proj. Due to

fg = IdΛ, we have Ωt
Λ(Y ) 
 Λ ⊗Γ (Γ ⊗Λ Ωt

Λ(Y )) ∈ Λ-proj. Consequently,

proj.dim(ΛX) � proj.dim(ΛY ) − s � proj.dim(ΛΩt
Λ(Y )) + t− s � t− s.

Thus fin.dim(Λ) � fin.dim(Γ) − s. This finishes the proof of (∗).
Now, we take Λ := S and Γ := S � M . Let f : S → S � M and g : S � M → S be the

canonical injection and surjection, respectively. Then fg = IdS. We assume S �= 0. Then
ΓΓ ⊗L

Λ Λ = Γ �= 0 and fin.dim(ΓΓ ⊗L

Λ −) � 0. Suppose fin.dim(R) = m < ∞. Due to (∗), in
order to show Corollary 3.19(b), we only need to prove fin.dim(ΓΓ ⊗L

S −) � −m. This is
equivalent to TorSn(Γ, X) 
 TorSn(M,X) = 0 for all X ∈ P<∞(S) and all n > m.

To check the latter, we first prove TorSj (M,N) 
 TorRj (M,N) for any S-module N and
for all j � 1. Indeed, let P • be a deleted projective resolution of the Rop-module M . Since
TorRi (M,S) = 0 for all i � 1, P • ⊗R S is a deleted projective resolution of the Sop-module
M ⊗R S. Note that M ⊗R S 
 M as Sop-modules since λ : R → S is a ring epimorphism and
M is an Sop-module. It follows that P • ⊗R S is a deleted projective resolution of the Sop-
module M . Since (P • ⊗R S) ⊗S N 
 P • ⊗R N as complexes, TorSj (M,N) 
 TorRj (M,N) for
all j � 1.

Let SX ∈ P<∞(S). Since proj.dim(RS) < ∞, the Change of Rings Theorem implies
proj.dim(RX) � proj.dim(SX) + proj.dim(RS) < ∞. Hence proj.dim(RX) � m = fin.dim(R)
and TorSn(M,X) 
 TorRn (M,X) = 0 if n > m. This means fin.dim(ΓΓ ⊗L

S −) � −m. Now, by
the result (∗), fin.dim(S) � fin.dim(Γ) + m = fin.dim(S � M) + fin.dim(R). This completes
the proof of Corollary 3.19(b). �

We remark that the statement (∗) also implies that for the trivial extension of R by an
R-R-bimodule M , we always have fin.dim(R) � fin.dim(R � M) + flat.dim(MR).

As an application of Theorem 1.2, we have the following result for pullback rings.

Corollary 3.20. Let R be a ring, and let I1 and I2 be ideals of R such that I1 ∩ I2 = 0.
Then

(1) fin.dim(R) � fin.dim(R/I1) + fin.dim(R/I2) + max{1,flat.dim((R/I2)R)} + 1;
(2) suppose TorRi (I2, I1) = 0 for all i � 0. If RR/I1 ∈ P<∞(R), then

(a) fin.dim(R/(I1 + I2)) � fin.dim(R/I1) + fin.dim(R/I2) + 1;
(b) fin.dim(R/I1) � fin.dim(R) + fin.dim(R/(I1 + I2)) + max{1,proj.dim(R(R/I1))} +

3.

Proof. Let λ : R → S := R/I1 and μ : R → T := R/I2 be the canonical surjective ring
homomorphisms. Since I1 ∩ I2 = 0, (λ, μ,R/(I1 + I2), 1) is an exact context, where 1 is the
identity of the ring R/(I1 + I2). Even more, since R is a pullback of the surjective maps
R → R/Ii over R/(I1 + I2), the pair (λ, μ) is exact (for example, see [6, Section 3]). So T �R

S 
 S �R T as rings. Note that S �R T = (R/I1) �R (R/I2) = R/(I1 + I2) by Lemma 2.3(2).
Thus T �R S 
 R/(I1 + I2) as rings.

Now, we apply Theorem 1.2 to show Corollary 3.20. Clearly, it remains to check that if
TorRi (I2, I1) = 0 for i � 0, then TorRi (R/I2, R/I1) = 0 for all i > 0. In fact, for i > 2, we have
TorRi (R/I2, R/I1) 
 TorRi−2(I2, I1) = 0 by assumption. Note that TorR1 (R/I2, R/I1) 
 (I2 ∩
I1)/(I2I1) = 0 and TorR2 (R/I2, R/I1) 
 TorR1 (I2, R/I1) = Ker(f) where f : I2 ⊗R I1 → I2I1 is
the multiplication map. Since I2 ⊗R I1 = 0 by assumption, TorR2 (R/I2, R/I1) 
 Ker(f) = 0.
Thus TorRi (R/I2, R/I1) = 0 for all i > 0. �
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Finally, we apply Theorem 1.2 to homological ring epimorphisms. First of all, we present a
method to construct new homological ring epimorphisms from given ones.

Lemma 3.21. Let λ : R → S be a homological ring epimorphism. Suppose that I is an ideal
of R such that the image J ′ of I under λ is a left ideal in S and that the restriction of λ to I
is injective. Let J be the ideal of S generated by J ′. Then the following are equivalent.

(1) The homomorphism λ̃ : R/I → S/J induced from λ is homological.

(2) TorR/I
i (J/J ′, S/J) = 0 for all i � 1.

(3) The multiplication map I ⊗R S → J is an isomorphism and TorRj (I, S) = 0 for all j � 1.

(4) TorRj (R/I, S) = 0 for all j � 1.

Let B := ( S S/J′
0 R/I ). If one of the above statements holds true, then there exists a recollement

of derived module categories:

Proof. We take T := R/I and μ : R → T to be the canonical surjective homomorphism
of rings. Note that J ′ is a left ideal of S. Thus S ⊗R T = S ⊗R (R/I) 
 S/(S · I) = S/J ′.
On the one hand, the pair (λ, μ) is exact if and only if λ|I : I → J ′ is an isomorphism. On
the other hand, by Lemma 2.3(2), S �R T = S � (R/I) = S/J with J = J ′S, and the ring
homomorphism φ : T → S �R T in [6, Proposition 5.7] can be chosen as the canonical map λ̃ :
R/I → S/J induced from λ. Thus (1) and (4) are equivalent by [6, Proposition 5.7]. Moreover,
the recollement follows from [6, Theorem 1.1].

In the following, we shall show that (3) and (4) are equivalent.
Applying the tensor functor −⊗R S to the exact sequence 0 → I → R → R/I → 0, we

obtain

TorR1 (R/I, S) 
 Ker(δ) and TorRj+1(R/I, S) 
 TorRj (I, S) for all j � 1,

where δ : I ⊗R S → J is the multiplication map defined by x⊗ s �→ (x)λs for x ∈ I and s ∈ S.
This implies that (4) is equivalent to (3).

Now we show that (1) and (2) are equivalent.
According to Lemma 2.3(1) and the fact that λ is a ring epimorphism, λ̃ is a ring epimor-

phism. By assumption, J ′ is a left ideal of S, and therefore S ⊗R (R/I) 
 S/(S · I) = S/J ′.
Thanks to a general result in the proof of [6, Lemma 5.6], TorR/I

i (S/J ′,W ) 
 TorR/I
i (S ⊗R

(R/I),W ) = 0 for all i � 1 and all S/J-modules W . It then follows that TorR/I
i (S/J ′, S/J) = 0

for all i � 1. Consider the short exact sequence of right R/I-modules:

0 −→ J/J ′ −→ S/J ′ −→ S/J −→ 0.

If we apply the functor −⊗R/I (S/J) to this sequence, then TorR/I
i (J/J ′, S/J) 


TorR/I
i+1 (S/J, S/J) for all i � 1 and the connecting homomorphism TorR/I

1 (S/J, S/J) →
(J/J ′) ⊗R/I (S/J) is injective.

If TorR/I
1 (S/J, S/J) = 0, then TorR/I

j (S/J, S/J) = 0 for all j � 1 if and only if

TorR/I
i (J/J ′, S/J) = 0 for all i � 1. This implies that (1) and (2) are equivalent. So it is

enough to demonstrate that TorR/I
1 (S/J, S/J) = 0 always holds under the assumptions of

Lemma 3.21. However, this is true if we can show (J/J ′) ⊗R/I (S/J) = 0.
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In fact, if C → D is a ring epimorphism, then, for any D-module X and any right D-module
Y , we have D ⊗C X 
 X as D-modules, and Y ⊗C D 
 Y as right D-modules. This fact,
together with properties of ring epimorphisms, implies the following isomorphisms:

(J/J ′) ⊗R/I (S/J) 
 (J/J ′) ⊗R (S/J) 
 (J/J ′) ⊗R (S ⊗R (S/J)) 
 ((J/J ′) ⊗R S) ⊗R (S/J).

Since SJ ′ = J ′ and JJ ′ ⊆ J ′, we deduce ((J/J ′) ⊗R S)J ′ = 0. This means that (J/J ′) ⊗R S
is a right S/J-module. Remark that the composite of the two ring epimorphisms R → S and
S → S/J is again a ring epimorphism. It follows that ((J/J ′) ⊗R S) ⊗R (S/J) 
 (J/J ′) ⊗R S
as right S/J-modules.

In the following, we shall show (J/J ′) ⊗R S = 0. Actually, applying the functor −⊗R S to
the exact sequence

0 −→ J ′ α−→ J −→ J/J ′ −→ 0

of right R-modules, we get another exact sequence

J ′ ⊗R S
α⊗RS−→ J ⊗R S −→ (J/J ′) ⊗R S −→ 0

of right S-modules. Since J is a right S-module and λ : R → S is a ring epimorphism,
the multiplication map ψ : J ⊗R S → J , given by x⊗ s �→ xs for x ∈ J and s ∈ S, is an
isomorphism. Note that the map (α⊗R S)ψ : J ′ ⊗R S → J is surjective. This yields that
α⊗R S is surjective and (J/J ′) ⊗R S = 0. Hence TorR/I

1 (S/J, S/J) = 0. This finishes the
proof. �

A special case of Lemma 3.21 appears in trivial extensions. Let λ : R → S be a homomor-
phism of rings and M be an S-S-bimodule. Then λ is homological if and only if λ̃ : R � M →
S � M is homological. The necessity of this condition follows from [6, Theorem 1.1] and the
proof of Corollary 3.19. The sufficiency can be seen from Lemma 3.21.

Applying Theorem 1.2 to the exact pair (λ, μ) in the proof of Lemma 3.21, we obtain the
following estimations on finitistic dimensions, which can be applied to a class of examples of
Milnor squares in the following corollary.

Corollary 3.22. Let λ : R → S be a homological ring epimorphism. Suppose that I is an
ideal of R such that the image J ′ of I under λ is a left ideal in S and that the restriction of λ
to I is injective. Let J be the ideal of S generated by J ′. Suppose that one of the conditions
(1)–(4) in Lemma 3.21 holds. Then

(1) fin.dim(R) � fin.dim(S) + fin.dim(R/I) + max{1,flat.dim((R/I)R)} + 1;
(2) if RS ∈ P<∞(R), then

(a) fin.dim(S) � fin.dim(R) and fin.dim(S/J) � fin.dim(R/I);
(b) fin.dim(B) � fin.dim(R) + fin.dim(S/J) + max{1,proj.dim(RS)} + 3, where

B := ( S S/J′
0 R/I ).
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