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Abstract

In this paper, we present two methods, induction and restriction procedures, to construct new stable
equivalences of Morita type. Suppose that a stable equivalence of Morita type between two algebras A
and B is defined by a B-A-bimodule N. Then, for any finite admissible set Φ and any generator X of
the category of A-modules, the Φ-Auslander-Yoneda algebras of X and N⊗A X are stably equivalent of
Morita type. Moreover, under certain conditions, we transfer stable equivalences of Morita type between
A and B to ones between eAe and f B f , where e and f are idempotent elements in A and B, respectively.
Consequently, for self-injective algebras A and B over a field without semisimple direct summands, and
for any A-module X and B-module Y , if the Φ-Auslander-Yoneda algebras of A⊕X and B⊕Y are stably
equivalent of Morita type for one finite admissible set Φ, then so are the Ψ-Auslander-Yoneda algebras
of A⊕X and B⊕Y for every finite admissible set Ψ. Moreover, two representation-finite algebras over
a field without semisimple direct summands are stably equivalent of Morita type if and only if so are
their Auslander algebras. As another consequence, we construct an infinite family of algebras of the
same dimension and the same dominant dimension such that they are pairwise derived-equivalent, but not
stably equivalent of Morita type. This answers a question by Thorsten Holm.
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1 Introduction

In the representation theory of algebras and groups, there are three fundamental equivalences: Morita, derived
and stable equivalences. Roughly speaking, the first two are induced from tensor products of bimodules or
two-sided complexes, thus there is a corresponding Morita theory for each (see [18, 21, 10]), while the last
one seems not yet to be well understood in this way, and therefore a Morita theory for stable equivalences is
missing. Recently, a special class of stable equivalences, called stable equivalences of Morita type, have been
introduced by Broué in the modular representation theory of finite groups. They are induced by bimodules,
have features of a Morita theory, and are shown to be of great interest in modern representation theory
since they preserve many homological and structural invariants of algebras and modules (see, for example,
[3, 4, 11, 12, 19, 23, 24]). In order to understand this kind of equivalences, one has to know, first of all,
examples and basic properties of stable equivalences of Morita type as many as possible. So, one of the
crucial questions in the course of studying these equivalences is:

Question: How to construct stable equivalences of Morita type for finite-dimensional algebras ?

Up to date, only a few methods using trivial extensions, one-point extensions and endomorphism algebras
have been known in [20, 15, 16, 17]. Of course, Rickard’s result that the existence of derived equivalences for
self-injective algebras implies the one of stable equivalences of Morita type provides another way to construct
stable equivalences of Morita type. This method, however, is no longer true for general finite-dimensional
algebras (see [8] for some new advances in this direction). So, a systematical method for constructing stable
equivalences of Morita type seems not yet to be available.

In this paper, we shall look for a more general and systematical answer to this question, and present two
methods, called induction and restriction procedures, to construct new stable equivalences of Morita type for
general finite-dimensional algebras. Here our induction procedure has two flexibilities, one is the choice of
generators, and the other is the one of finite admissible sets. Thus this construction provides a large variety
of stable equivalences of Morita type.

To state our first main result, let us recall the definition of Φ-Auslander-Yoneda algebras in [7]. Let
A be a finite-dimensional algebra and X an A-module. Then, for an admissible set Φ of natural numbers,
there is defined an algebra EΦ

A (X), called the Φ-Auslander-Yoneda algebra of X in [7], which is equal toL
i∈Φ Ext j

A(X ,X) as a vector space, and its multiplication is defined in a natural way (see Subsection 2.2
below for details). Our main result for inductions reads as follows:

Theorem 1.1. (The Induction Procedure)
Suppose that A and B are finite-dimensional k-algebras over a field k. Assume that two bimodules AMB

and BNA define a stable equivalence of Morita type between A and B. Let X be an A-module which is a
generator for the category of A-modules. Then, for any finite admissible set Φ of natural numbers, there is a
stable equivalence of Morita type between EΦ

A (X) and EΦ
B (N⊗A X).

Note that if Φ = {0}, then the above result was known in [17]. Thus Theorem 1.1 generalizes the
main result in [17], and provides much more possibilities for constructing stable equivalences of Morita type
through the choices of different Φ . Also, our proof of Theorem 1.1 is different from that in [17].

Next, we shall exploit certain kinds of restrictions to construct stable equivalences of Morita type. Our
result along this line is the following theorem.

Theorem 1.2. (The Restriction Procedure)
Suppose that A and B are finite-dimensional k-algebras over a field k such that neither A nor B has

semisimple direct summands. Further, suppose that AMB and BNA are bimodules without projective bimodules
as direct summands, and define a stable equivalence of Morita type between A and B. If e2 = e ∈ A such
that M⊗B Ne ∈ add(Ae), and if f 2 = f ∈ B such that add(B f ) = add(Ne), then the bimodules eM f and f Ne
define a stable equivalence of Morita type between eAe and f B f . Moreover, if we define Λ = EndeAe(eA),
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Γ = End f B f ( f B), N′ = Hom f B f (( f B)Γ, f Ne⊗eAe (eA)Λ) and M′ = HomeAe((eA)Λ,eM f ⊗ f B f ( f B)Γ), then
ΓN′

Λ and ΛM′
Γ define a stable equivalence of Morita type between Λ and Γ.

In fact, under the assumptions of Theorem 1.2, we may have a more general formulation, namely, for any
finite admissible set Φ of natural numbers and for any eAe-module X , the Φ-Auslander-Yoneda algebras of
eAe⊕X and f B f ⊕ f Ne⊗eAe X are stably equivalent of Morita type. This is a consequence of Theorem 1.1
and Theorem 1.2.

Also, from Theorem 1.1 and Theorem 1.2 we have the following characterization of stable equivalences
of Morita type for representation-finite algebras as well as for self-injective algebras.

Corollary 1.3. Suppose that A and B are finite-dimensional k-algebras over a field k such that neither A nor
B has semisimple direct summands.

(1) Assume further that A and B are self-injective. Let X be an A-module and let Y be a B-module. If there
is a finite admissible set Φ of natural numbers such that EΦ

A (A⊕X) and EΦ
B (B⊕Y ) are stably equivalent of

Morita type, then, for any finite admissible set Ψ of natural numbers, the algebras EΨ
A (A⊕X) and EΨ

B (B⊕Y )
are stably equivalent of Morita type.

(2) Assume additionally that A and B are representation-finite. Then A and B are stably equivalent of
Morita type if and only if so are their Auslander algebras.

Note that the “only if ” part of Corollary 1.3 (2) follows from [17].
Of course, there are many important classes of algebras which are of the form EndA(A⊕Y ) with A self-

injective and Y an A-module. For example, Schur algebras or q-Schur algebras. Thus, as a consequence of
Corollary 1.3, we know that the global dimension of Endk[Sn](k[Sn]⊕Ωi(Y )) is finite for i ∈ Z, where k[Sn] is
the group algebra of the symmetric group Sn, Y is the direct sum of non-projective indecomposable Young
modules, and Ω is the usual syzygy operator.

As another byproduct of our considerations in this paper, we can construct a family of derived-equivalent
algebras with certain special properties.

Corollary 1.4. Suppose that k is a field with a non-zero element that is not a root of unity. Then, there is
an infinite series of k-algebras of the same dimension such that they have the same dominant and global
dimensions, and are all derived-equivalent, but pairwise not stably equivalent of Morita type.

The contents of this paper are organized as follows. In Section 2, we fix notations and prepare some
basic facts for our proofs. In Section 3 and Section 4, we prove our main results, Theorem 1.1 and Theorem
1.2, as well as Corollary 1.3(2), respectively. In Section 5, we concentrate our consideration on self-injective
algebras, and establish some applications of our main results. In particular, in this section we prove Corollary
1.3(1) and supply a sufficient condition, which is used in Section 6, to verify when two algebras are not stably
equivalent of Morita type. In Section 6, we apply our results in the previous sections to Liu-Schulz algebras
and give a proof of Corollary 1.4 which answers a question by Thorsten Holm.

2 Preliminaries

In this section, we shall fix some notations, and recall some definitions and basic results which are needed in
the proofs of our main results.

2.1 Some conventions and homological facts

Throughout this paper, k stands for a fixed field. All categories and functors will be k-categories and k-
functors, respectively. Unless stated otherwise, all algebras considered are finite-dimensional k-algebras, and
all modules are finitely generated left modules.
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Let C be a category. Given two morphisms f : X → Y and g : Y → Z in C , we denote the composition of
f and g by f g which is a morphism from X to Z, while we denote the composition of a functor F : C → D
between categories C and D with a functor G : D →E between categories D and E by GF which is a functor
from C to E .

If C is an additive category and X is an object in C , we denote by add(X) the full subcategory of C
consisting of all direct summands of direct sums of finitely many copies of X . The object X is called an
additive generator for C if add(X) = C .

Let A be an algebra. We denote by A-mod the category of all A-modules, by A-proj (respectively, A-inj)
the full subcategory of A-mod consisting of projective (respectively, injective) modules, by D the usual k-
duality Homk(−,k), and by νA the Nakayama functor DHomA(−, AA) of A. Note that νA is an equivalence
from A-proj to A-inj with the inverse HomA(D(A),−). We denote the global and dominant dimensions of A
by gl.dim(A) and dom.dim(A), respectively.

As usual, by Db(A) we denote the bounded derived category of complexes over A-mod. It is known that
A-mod is fully embedded in Db(A) and that HomDb(A)(X ,Y [i])' ExtiA(X ,Y ) for all i≥ 0 and all A-modules
X and Y .

Let X be an A-module. We denote by Ωi
A(X) the i-th syzygy, by soc(X) the socle, and by rad(X) the

Jacobson radical of X .
Let X be an additive generator for A-mod. The endomorphism algebra of X is called the Auslander

algebra of A. This algebra is, up to Morita equivalence, uniquely determined by A. Note that Auslander
algebras can be described by two homological properties: An algebra A is an Auslander algebra if gl.dim(A)≤
2≤ dom.dim(A).

An A-module X is called a generator for A-mod if add(AA) ⊆ add(X); a cogenerator for A-mod if
add(D(AA)) ⊆ add(X), and a generator-cogenerator for A-mod if it is both a generator and a cogenerator
for A-mod. Clearly, an additive generator M for A-mod is a generator-cogenerator for A-mod since we have
add(M) = A-mod by definition for the additive generator M for A-mod. But the converse is not true in general.

Let T be an arbitrary A-module, and let B be the endomorphism algebra of T . We consider the following
full subcategories of A-mod related to T .

Gen(AT ) := {X ∈ A-mod | there is a surjective homomorphism from T m to Xwith m≥ 1}.
Pre(AT ) := {X ∈ A-mod | there is an exact sequence T1 → T0 → X with all Ti ∈ add(AT )}.

App(AT ) := {X ∈ A-mod | there is a homomorphism g : T0 → X with T0 ∈ add(AT ) such that
Ker(g) ∈ Gen(AT ) and HomA(T ′,g) is surjective for all T ′ ∈ add(T )}.

The following lemma is known, for a proof, we refer, for example, to [25, Lemma 2.1].

Lemma 2.1. Let T be an A-module and B = End(AT ). Let X be an arbitrary A-module. Then:
(1) If Y is a right B-module, then the natural homomorphism δ: Y ⊗B HomA(T,X) →

HomB(HomA(X ,T ),Y ), given by y⊗ f 7→ δy⊗ f with δy⊗ f (g) = y( f g) for y ∈ Y, f ∈ HomA(T,X),g ∈
HomA(X ,T ), is an isomorphism if X ∈ add(AT ).

(2) If X ′ ∈ add(AT ), or X ∈ add(AT ), then the composition map µ : HomA(X ′,T )⊗B HomA(T,X) →
HomA(X ′,X) given by f ⊗g 7→ f g is bijective.

(3) If X ∈ Gen(AT ), then the evaluation map eX : T ⊗B HomA(T,X)→ X is surjective. If X ∈ App(AT ),
then eX is bijective. Conversely, if eX is bijective, then X ∈ App(AT ).

The next lemma is taken from [23, Lemma 2.1], which can also be verified directly.

Lemma 2.2. [23] (1) Let A,B,C and E be k-algebras, and let AXB and BYE be bimodules with XB projective.
Put X∗ = HomB(X ,B). Then the natural homomorphism ϕ : AX⊗BYE →HomB(BX∗

A ,BYE), defined by x⊗y 7→
ϕx⊗y, where ( f )ϕx⊗y = ( f x)y for x ∈ X ,y ∈ Y and f ∈ X∗, is an isomorphism of A-E-bimodules.
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(2) In the situation (EPA,CXB,AUB), if PA is projective, or if XB is projective, then EP ⊗A

HomB(CXB,AUB)'HomB(CXB,EP⊗A UB) as E-C-bimodules. Dually, in the situation (APE ,BXC,BUA), if AP
is projective, or if BX is projective, then HomB(BXC,BUA)⊗A PE 'HomB(BXC,BU⊗A PE) as C-E-bimodules.

The following is a well-known result due to Auslander (for example, see [2, Proposition 5.6, p.214]).

Lemma 2.3. Let Λ be an Artin algebra such that gl.dim(Λ)≤ 2≤ dom.dim(Λ). Let U be a Λ-module such
that add(U) is the full subcategory of Λ-mod consisting of all projective-injective Λ-modules. Then

(1) A := EndΛ(U) is representation-finite.
(2) Λ is Morita equivalent to EndA(X), where X is an additive generator for A-mod.

Finally, we recall the definition of D-split sequences from [6]. For our purpose, we just restrict our
attention to module categories.

Let D be a full subcategory of A-mod. A short exact sequence

0−→ X
f−→M

g−→ Y −→ 0

in A-mod is called a D-split sequence if M ∈D , HomA(D′,g) and HomA( f ,D′) are surjective for every object
D′ ∈D .

Note that D-split sequences were used in [6] to construct tilting modules of projective dimension at most
one.

2.2 Admissible sets and perforated orbit categories

In [7], a class of algebras, called Φ-Auslander-Yoneda algebras, were introduced, which include, for example,
Auslander algebras, generalized Yoneda algebras, preprojective algebras and certain trivial extensions.

Let N be the set of natural numbers {0,1,2, · · ·}. Recall that a subset Φ of N is said to be admissible
provided that 0∈Φ and that for any p,q,r ∈Φ with p+q+r ∈Φ we have p+q∈Φ if and only if q+r ∈Φ.

As shown in [7], there are a lot of admissible subsets ofN. For example, for any n≥ 0, the set {0,1, · · · ,n}
is clearly an admissible subset of N; also, given any subset S of N containing 0, the set {xm | x ∈ S} is
admissible for all m≥ 3 (see [7, Proposition 3.1]). But, not every subset of N containing zero is admissible.
A counterexample is the set {0,1,2,4} or the set {0,1,2,3,5}.

Let Φ be an admissible subset of N.
Let C be a k-category, and let F be an additive functor from C to itself. The (F,Φ)-orbit category C F,Φ

of C is a category in which the objects are the same as that of C , and the morphism set between two objects
X and Y is defined to be

HomC F,Φ(X ,Y ) :=
M

i∈Φ
HomC (X ,F iY ) ∈ k-Mod,

and the composition is defined in an obvious way, where k-Mod stands for the category of all vector spaces
over k. Since Φ is admissible, C F,Φ is an additive k-category. In particular, HomC F,Φ(X ,X) is a k-algebra
(which may not be finite-dimensional), and HomC F,Φ(X ,Y ) is an HomC F,Φ(X ,X)-HomC F,Φ(Y,Y )-bimodule.
For more details, we refer the reader to [7]. In this paper, the category C F,Φ is simply called a perforated orbit
category, and the algebra HomC F,Φ(X ,X) is called the perforated Yoneda algebra of X without mentioning F
and Φ.

In case C is the bounded derived category Db(A) with A a k-algebra, and F is the shift functor [1] of
Db(A), we denote simply by EΦ

A the (F,Φ)-orbit category C F,Φ, by EΦ
A (X ,Y ) the set HomEΦ

A
(X ,Y ), and

by EΦ
A (X) the endomorphism algebra HomEΦ

A
(X ,X) of X in EΦ

A . The latter is called Φ-Auslander-Yoneda
algebra of X . Note that each element in EΦ

A (X ,Y ) can be written as ( fi)i∈Φ with fi ∈ HomDb(A)(X ,Y [i]). The
composition of morphisms in EΦ

A can be interpreted as follows: for each triple (X ,Y,Z) of objects in Db(A),
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EΦ
A (X ,Y )×EΦ

A (Y,Z)−→ EΦ
A (X ,Z)

(
( fu)u∈Φ,(gv)v∈Φ

) 7→ (hi)i∈Φ,

where
hi := ∑

u,v∈Φ
u+v=i

fu(gv[u])

for each i ∈Φ. Clearly, if Φ is finite, then EΦ
A (X ,Y ) is finite-dimensional for all X ,Y ∈ A-mod.

Now, let us state some elementary properties of the Hom-functor EΦ
A (X ,−).

Lemma 2.4. Suppose that A is an algebra, that X is an A-module, and that Φ is a finite admissible subset of
N.

(1) Let addΦ
A (X) stand for the full subcategory of EΦ

A consisting of all objects in add(AX). Then the
Hom-functor EΦ

A (X ,−) : addΦ
A (X)−→ EΦ

A (X)-proj is an equivalence of categories;
(2) Let B be a k-algebra, and let P be a B-A-bimodule such that PA is projective. Then there is a canonical

algebra homomorphism αP : EΦ
A (X)−→ EΦ

B (P⊗A X) defined by ( fi)i∈Φ 7→ (P⊗A fi)i∈Φ for ( fi)i∈Φ ∈ EΦ
A (X).

Thus every left (or right) EΦ
B (P⊗A X)-module can be regarded as a left (or right) EΦ

A (X)-module via αP.

Proof. (1) Note that the objects of addΦ
A (X) are the same as the objects of add(X). Let C := addΦ

A (X).
Then HomC (Y,Z) = EΦ

A (Y,Z) for Y,Z ∈ add(X). Hence EΦ
A (X ,−) : C −→ EndC (X)-proj is the Hom-functor

HomC (X ,−). Clearly, we have rad(EndC (X)) = rad(EndA(X))⊕L06=i∈Φ ExtiA(X ,X) and HomC (X ,Y⊕Z)'
HomC (X ,Y )⊕HomC (X ,Z) for all Y,Z ∈ add(X). Now, it is routine to verify that the functor in (1) is an
equivalence of additive categories.

(2) Since the homomorphism αP is given explicitly, we can check (2) directly. ¤
The following homological result plays an important role in proving Theorem 1.1.

Lemma 2.5. Suppose that A,B and C are k-algebras. Let AX be a module, and let AYB and BPC be bimodules
with BP projective. Then, for each i ≥ 0, we have ExtiA(X ,Y ⊗B PC) ' ExtiA(X ,Y )⊗B PC as C

op
-modules.

Moreover, for each admissible subset Φ of N, we have EΦ
A (X ,Y ⊗B PC) ' EΦ

A (X ,Y )⊗B PC as EΦ
A (X)-C-

bimodules.

Proof. First, let us recall the Yoneda product. Assume that U,V and W are A-modules. Fix a minimal
projective resolution P•U of AU :

· · · −→ Pn dn−→ Pn−1 −→ ·· · −→ P1 d1−→ P0 d0−→U −→ 0,

with all Pi projective. If g : U → V is a homomorphism, then there is a lifting of g, which is a chain map

g• : P•U → P•V . Then, for each i≥ 1, we have a short exact sequence 0→Ωi
A(U) λi−→ Pi−1 µi−→Ωi−1

A (U)→ 0,
which gives rise to a right exact sequence of k-modules

HomA(Pi−1,V )
(λi)∗−→ HomA(Ωi

A(U),V )−→ ExtiA(U,V )−→ 0.

Hence each element of ExtiA(U,V ) can be regarded as a homomorphism in HomA(Ωi
A(U),V ) modulo the

subspace of HomA(Ωi
A(U),V ) generated by all homomorphisms that factorize through λi, where i ≥ 0 and

P−1 := 0. In what follows, we denote the image of f ∈ HomA(Ωi
A(U),V ) by f ∈ ExtiA(U,V ).

Given i, j ∈ N, fi ∈ HomA(Ωi
A(U),V ) and g j ∈ HomA(Ω j

A(V ),W ), we know that the Yoneda product

µ : ExtiA(U,V )⊗k Ext j
A(V,W )→ Exti+ j

A (U,W ) can be presented by fi⊗k g j 7→Ω j
A( fi)g j, where Ω j

A( fi) is the
j-th term of a lifting of fi. Note that the Yoneda product is independent of the choice of a lifting of fi.
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For each AW , there is a natural isomorphism θW : HomA(W,Y )⊗B PC → HomA(W,Y ⊗B PC) of C
op

-
modules, defined by w

(
θW ( f ⊗ p)

)
= w f ⊗ p for f ∈ HomA(W,Y ), p ∈ P, and w ∈ W . This is obtained

by putting X := W,U := Y in the second statement of Lemma 2.2(2). In other words, we have a natural
equivalence θ : HomA(−,Y )⊗B PC ' HomA(−,Y ⊗B PC) of functors from A-mod to C

op
-mod. Let

· · · −→ Qi −→ Qi−1 −→ ·· · −→ Q1 −→ Q0 −→ X −→ 0

be a minimal projective resolution of AX . Then, by definition, we have a right exact sequence of k-modules

HomA(Qi−1,Y )−→ HomA(Ωi
A(X),Y )−→ ExtiA(X ,Y )−→ 0.

Since BP is projective, the following diagram is exact and commutative for i≥ 0:

HomA(Qi−1,Y )⊗B PC

oθQi−1

²²

// HomA(Ωi
A(X),Y )⊗B PC

oθΩi
A(X)

²²

// ExtiA(X ,Y )⊗B PC
//

ϕi

²²Â
Â
Â

0

HomA(Qi−1,Y ⊗B PC) // HomA(Ωi
A(X),Y ⊗B PC) // ExtiA(X ,Y ⊗B PC) // 0,

where we set Q−1 := 0. This induces an isomorphism ϕi : ExtiA(X ,Y )⊗B PC → ExtiA(X ,Y ⊗B PC) defined by
fi⊗ p 7→ θΩi

A(X)( fi⊗ p), where fi ∈HomA(Ωi
A(X),Y ) and p∈ P. Clearly, ϕi is a C

op
-homomorphism for each

i≥ 0. Thus the first part of Lemma 2.5 is proved.
Second, for each admissible subset Φ of N, we define a map ϕΦ : EΦ

A (X ,Y )⊗B PC → EΦ
A (X ,Y ⊗B PC) by

( fi)⊗ p 7→ (ϕi( fi⊗ p)), where p ∈ P, and fi ∈ HomA(Ωi
A(X),Y ) with i ∈ Φ. By the above discussion, we

know that ϕΦ is an isomorphism of C
op

-modules. In order to prove that ϕΦ is an isomorphism of EΦ
A (X)-C-

bimodules, it suffices to show that ϕΦ is an isomorphism of left EΦ
A (X)-modules, or equivalently, we have to

check that the following diagram commutes for i, j ∈Φ with i+ j ∈Φ:

ExtiA(X ,X)⊗k Ext j
A(X ,Y )⊗B PC

µ⊗1
²²

1⊗ϕ j // ExtiA(X ,X)⊗k Ext j
A(X ,Y ⊗B PC)

µ
²²

Exti+ j
A (X ,Y )⊗B PC

ϕi+ j // Exti+ j
A (X ,Y ⊗B PC),

where µ is the usual Yoneda product. Let u ∈ HomA(Ωi
A(X),X), v ∈ HomA(Ω j

A(X),Y ) and p ∈ P. Then

(µ(1⊗ϕ j))(u⊗ v⊗ p) = Ω j
A(u)θΩ j

A(X) (v⊗ p) and (ϕi+ j(µ⊗1))(u⊗ v⊗ p) = θΩi+ j
A (X) ((Ω

j
A(u)v)⊗ p).

By definition, for each x ∈Ωi+ j
A (X), we get

x
(
Ω j

A(u)θΩ j
A(X) (v⊗ p)

)
= x(Ω j

A(u)v)⊗ p = x
(

θΩi+ j
A (X) ((Ω

j
A(u)v)⊗ p)

)
.

It follows that µ(1⊗ϕ j) = ϕi+ j(µ⊗1). This implies that ϕΦ is an isomorphism of EΦ
A (X)-C-bimodules. Thus

the proof is completed. ¤

3 Inductions for stable equivalences of Morita type

In this section, we shall prove Theorem 1.1. First, we recall the definition of stable equivalences of Morita
type in [3].
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Definition 3.1. Let A and B be (arbitrary) k-algebras. We say that A and B are stably equivalent of Morita
type if there is an A-B-bimodule AMB and a B-A-bimodule BNA such that

(1) M and N are projective as one-sided modules, and
(2) M⊗B N ' A⊕P as A-A-bimodules for some projective A-A-bimodule P, and N⊗A M ' B⊕Q as

B-B-bimodules for some projective B-B-bimodule Q.

In this case, we say that M and N define a stable equivalence of Morita type between A and B. Moreover,
we have two exact functors TN := N⊗A− : A-mod→B-mod and TM := M⊗B− : B-mod→A-mod. Similarly,
the bimodules P and Q define two exact functors TP and TQ, respectively. Note that the images of TP and TQ

consist of projective modules.
From now on, we assume that A,B,M,N,P and Q are fixed as in Definition 3.1, and that X is a generator

for A-mod. Moreover, we fix a finite admissible subset Φ of N, and define Λ := EΦ
A (X) and Γ := EΦ

B (N⊗A X).
Since the functors TN and TM are exact, they preserve acyclicity, and can be extended to triangle functors

T ′N : Db(A)→ Db(B) and T ′M : Db(B)→ Db(A), respectively. Furthermore, T ′N and T ′M induce canonically
two functors F : EΦ

A → EΦ
B and G : EΦ

B → EΦ
A , respectively. More precisely, if X• ∈Db(A), then F(X•) :=

(N⊗A X i,N⊗A di
X), and if f := ( f j) j∈Φ ∈ HomEΦ

A
(X•,Y •) with Y • ∈ Db(A), then F( f ) := (N⊗A f j) j∈Φ ∈

HomEΦ
B
(F(X•),F(Y •)). Similarly, we define the functor G.

The functor F gives rise to a canonical algebra homomorphism αN : EΦ
A (X•) → EΦ

B (F(X•)) for each
object X• ∈Db(A). In particular, for any Z• ∈Db(B), we can regard EΦ

B (Z•,F(X•)) as an EΦ
B (Z•)-EΦ

A (X•)-
bimodule via αN . Note that the homomorphism αN coincides with the one defined in Lemma 2.4, when X•

is an A-module.

Proof of Theorem 1.1. We define U := EΦ
A (X ,TM(N⊗A X)) and V := EΦ

B (N⊗A X ,TN(X)). In the fol-
lowing we shall prove that U and V define a stable equivalence of Morita type between Λ and Γ.

First, we endow U with a right Γ-module structure by u · γ := uG(γ) for u ∈U and γ ∈ Γ, where uG(γ)
denotes the composition of u with G(γ) in the category EΦ

A , and endow V with a right Λ-module structure by
v ·λ := vF(λ) for v ∈V and λ ∈ Λ. Then, U becomes a Λ-Γ-bimodule, and V becomes a Γ-Λ-bimodule.

By definition, we know V = Γ, and it is a projective left Γ-module. Since AX is a generator for A-mod
and the image of TP consists of projective modules, we conclude that TM(N ⊗A X) = M⊗B (N ⊗A X) '
X⊕P⊗A X ∈ add(X). Thus U is projective as a left Λ-module by Lemma 2.4.

(1) U⊗Γ V , as a Λ-Λ-bimodule, satisfies the condition (2) in Definition 3.1.
Indeed, we write W := EΦ

A (X ,(TMTN)(X)), and define a right Λ-module structure on W by w · λ′ :=
w(GF)(λ′) for w ∈W and λ′ ∈ Λ. Then W becomes a Λ-Λ-bimodule. Note that there is a natural Λ-module
isomorphism ϕ : U ⊗Γ V → W defined by x⊗ y 7→ xG(y) for x ∈ U and y ∈ V . We claim that ϕ is an
isomorphism of Λ-Λ-bimodules. In fact, it suffices to show that ϕ respects the structure of right Λ-modules.
However, this follows immediately from a verification: for c ∈U,d ∈V and a ∈ Λ, we have

((c⊗d) ·a)ϕ = (c⊗ (dF(a))) = cG(dF(a))ϕ = cG(d)(GF)(a) = (c⊗d)ϕ ·a.

Combining this bimodule isomorphism ϕ with Lemma 2.4, we get the following isomorphisms of Λ-Λ-
bimodules:

(∗) U⊗Γ V ' EΦ
A (X ,(TMTN)(X))' EΦ

A (X ,X)⊕EΦ
A (X ,P⊗A X) = Λ⊕EΦ

A (X ,P⊗A X),

where the second isomorphism follows from M⊗B N ' A⊕P as A-A-bimodules, and where the right Λ-
module structure on EΦ

A (X ,P⊗A X) is induced by the canonical algebra homomorphism Λ → EΦ
A (P⊗A X),

which sends ( fi)i∈Φ in Λ to (P⊗A fi)i∈Φ (see Lemma 2.4 (2)).
Now, we show that EΦ

A (X ,P⊗A X) is a projective Λ-Λ-bimodule. In fact, since P ∈ add(AA⊗k AA), we
conclude that EΦ

A (X ,P⊗A X) ∈ add(EΦ
A (X ,(A⊗k A)⊗A X)). Thus, it is sufficient to prove that EΦ

A (X ,(A⊗k
A)⊗A X) is a projective Λ-Λ-bimodule. For this purpose, we first note that the right Λ-module structure on
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EΦ
A (X ,(A⊗k A)⊗A X) is induced by the canonical algebra homomorphism αA⊗kA : Λ→ EΦ

A ((A⊗k A)⊗A X),
which sends g := (gi)i∈Φ in Λ to ((A⊗k A)⊗A gi)i∈Φ. Clearly, AA⊗k A⊗A X ∈ add(AA). It follows that
Ext j

A

(
(A⊗k A)⊗A X ,(A⊗k A)⊗A X

)
= 0 for any j > 0, and therefore (A⊗k A)⊗A gi = 0 for any 0 6= i ∈ Φ.

Thus we have αA⊗kA(g) = (A⊗k A)⊗A g0. If π : Λ → EndA(X) is the canonical projection and µ′ is the
canonical algebra homomorphism EndA(X)→ EndA

(
(A⊗k A)⊗A X

)
, then αA⊗kA = πµ′. Thus the right Λ-

module structure on EΦ
A (X ,(A⊗k A)⊗A X) is induced by EndA(X). Similarly, from the homomorphisms

Λ = EΦ
A (X) π−→ EndA(X)

µ−→ EndA(A⊗k X) = EΦ
A (A⊗k X),

where µ : EndA(X)→ EndA(A⊗k X) is induced by the tensor functor A⊗k−, we see that the right Λ-module
structure on EΦ

A (X ,A⊗k X) is also induced by EndA(X). Thus EΦ
A (X ,(A⊗k A)⊗A X) ' EΦ

A (X ,A⊗k X) as
Λ-Λ-bimodules. Moreover, it follows from Lemma 2.5 that EΦ

A (X ,A⊗k X) ' EΦ
A (X ,A)⊗k X as Λ-EndA(X)-

bimodule. Since the A-module X can be regarded as a right Λ-module via the homomorphism π, we see that X
is actually isomorphic to EΦ

A (A,X) as right Λ-modules. Thus EΦ
A (X ,A)⊗k X ' EΦ

A (X ,A)⊗k EΦ
A (A,X) as Λ-Λ-

bimodules. Since AA∈ add(X), we know that EΦ
A (X ,A) is a projective Λ-module and EΦ

A (A,X) is a projective
right Λ-module. Hence EΦ

A (X ,A)⊗k X is a projective Λ-Λ-bimodule. This implies that EΦ
A (X ,P⊗A X) is a

projective Λ-Λ-bimodule.
(2) V ⊗Λ U , as a Γ-Γ-bimodule, fulfills the condition (2) in Definition 3.1.
Let Z := EΦ

B (N⊗A X ,TNTM(N⊗A X)). Similarly, we endow Z with a right Γ-module structure defined by
z · b := z(FG)(b) for z ∈ Z and b ∈ Γ. Then Z becomes a Γ-Γ-bimodule. Observe that, for each A-module
Y , there is a homomorphism ΨY : V ⊗Λ EΦ

A (X ,Y ) → EΦ
B (N ⊗A X ,TN(Y )) of Γ-modules, which is defined

by g⊗ h 7→ gF(h) for g ∈ V and h ∈ EΦ
A (X ,Y ). This homomorphism is natural in Y . In other words, Ψ :

V ⊗Λ EΦ
A (X ,−)→ EΦ

B (N⊗A X ,TN(−)) is a natural transformation of functors from A-mod to Γ-mod. Clearly,
ΨX is an isomorphism of Γ-modules. It follows from TM(N⊗A X) ∈ add(X) that ΨTM(N⊗AX) : V ⊗Λ U → Z is
a Γ-isomorphism. Similarly, we can check that ΨTM(N⊗AX) preserves the structure of right Γ-modules. Thus
ΨTM(N⊗AX) : V ⊗Λ U → Z is an isomorphism of Γ-Γ-bimodules, and there are the following isomorphisms of
Γ-Γ-bimodules:

(∗∗) V ⊗Λ U ' Z ' Γ⊕EΦ
B (N⊗A X ,Q⊗B (N⊗A X)),

where the second isomorphism is deduced from N⊗A M ' B⊕Q as B-B-bimodules. By an argument similar
to that in the proof of (1), we can show that EΦ

B (N⊗A X ,Q⊗B (N⊗A X)) is a projective Γ-Γ-bimodule.
It remains to show that UΓ and VΛ are projective. This is equivalent to showing that the tensor functors

TU := U ⊗Γ− : Γ-mod→ Λ-mod and TV := V ⊗Λ− : Λ-mod→ Γ-mod are exact. Since tensor functors are
always right exact, the exactness of TU is equivalent to the property that TU preserve injective homomorphisms
of modules. Now, suppose that f : C→D is an injective homomorphism between Γ-modules C and D. Since
EΦ

B (N⊗A X ,Q⊗B (N⊗A X)) is a right projective Γ-module, we know from (∗∗) that the composition functor
TV TU is exact. In particular, the homomorphism (TV TU)( f ) : (TV TU)(C)→ (TV TU)(D) is injective. Let µ :
Ker (TU( f ))→ TU(C) be the canonical inclusion. Clearly, we have µTU( f ) = 0, which shows TV (µTU( f )) =
TV (µ)(TV TU)( f ) = 0. It follows that TV (µ) = 0 and (TU TV )(µ) = 0. By (∗), we get µ = 0, which implies
that the homomorphism TU( f ) is injective. Hence TU preserves injective homomorphisms. Similarly, we can
show that TV preserves injective homomorphisms, too. Consequently, UΓ and VΛ are projective.

Thus, the bimodules U and V define a stable equivalence of Morita type between Λ and Γ. This finishes
the proof of Theorem 1.1. ¤

Remarks. (1) If we take Φ = {0} in Theorem 1.1, then we get [17, Theorem 1.1]. If we assume that A is a
self-injective algebra, then we get a stable equivalence of Morita type between EΦ

A (A⊕X) and EΦ
A (A⊕Ωi

A(X))
for any A-module X , any finite admissible subset Φ of N, and any integer i ∈ Z. This follows from Theorem
1.1 and the fact that ΩA provides a stable equivalence of Morita type between A and itself if A is self-injective.
Thus we re-obtain the stable equivalence of [7, Corollary 3.14].
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(2) For any A-module X , we denote by proj.dim(AX) the projective dimension of X . Clearly, we have
proj.dim(AX) ≤ proj.dim(AX ⊕P⊗A X) = proj.dim(AM⊗B N⊗A X) ≤ proj.dim(BN⊗A X) ≤ proj.dim(AX).
This implies that the global and finitistic dimensions are invariant under stable equivalences of Morita type.
In Section 4 of [17], it was shown that the dominant dimension is also invariant under stable equivalences of
Morita type. Thus, Theorem 1.1 asserts actually also that these dimensions are equal for algebras EΦ

A (X) and
EΦ

B (N⊗A X).
Many important classes of algebras are of the form EndA(A⊕X) with A a self-injective algebra. Let k be a

field with infinitely many elements, and let V be an n-dimensional k-space and V⊗r the r-fold tensor space of
V . Then the symmetric group Sr of r letters acts on the tensor space from the right hand side by permutation.
Now we assume n≥ r. Following [5, 2.6c], the Schur algebra S(n,r) is defined to be the endomorphism ring
of the right k[Sr]-module V⊗r. It is well known that the Schur algebra S(n,r) with n≥ r is Morita equivalent
to Endk[Sn](k[Sn]⊕Y ) and has finite global dimension, where Y is the direct sum of all non-projective Young
modules. From the above remarks (see also [7, Corollary 3.14]), we may get a series of algebras which are
stably equivalent of Morita type to Schur algebras. For unexplained terminology in the next corollary, we
refer the reader to [5].

Corollary 3.2. Suppose that k is an algebraically closed field. Let Sn be the symmetric group of degree n.
We denote by Y the direct sum of all non-projective Young modules over the group algebra k[Sn] of Sn. Then,

(1) for every finite admissible subset Φ of N, the algebras EΦ
k[Sn]

(k[Sn]⊕Y ) and EΦ
k[Sn]

(k[Sn]⊕Ωi(Y )) are
stably equivalent of Morita type for all i ∈ Z.

(2) All algebras Endk[Sn](k[Sn]⊕Ωi(Y )) are stably equivalent of Morita type to the Schur algebra Sk(n,n).
In particular, gl.dim

(
Endk[Sn](k[Sn]⊕Ωi(Y )

)
< ∞ for all i ∈ Z.

4 Restrictions for stable equivalences of Morita type

In this section, we shall consider the general question of how to transfer stable equivalences of Morita type
between algebras A and B over a field to the ones between eAe and f B f , where e and f are idempotent
elements in A and B, respectively. In particular, we shall prove Theorem 1.2 in this section.

Before we start with our proof of Theorem 1.2, we state the following facts, which are essentially known
in the literature. However, we would like to collect them together as a lemma for the convenience of the
reader.

Lemma 4.1. Suppose that A and B are k-algebras without semisimple direct summands. Assume that AMB

and BNA define a stable equivalence of Morita type between A and B, and that M and N do not have any
projective bimodules as direct summands. Then,

(1) there are isomorphisms of bimodules: N ' HomA(M,A) ' HomB(M,B) and M ' HomA(N,A) '
HomB(N,B).

(2) Both (N⊗A−,M⊗B−) and (M⊗B−,N⊗A−) are adjoint pairs of functors.
(3) There are isomorphisms of bimodules: P ' HomA(P,A) and Q ' HomB(Q,B), where P and Q are

the bimodules defined in Definition 3.1. Moreover, the bimodules APA and BQB are projective-injective.
(4) If AI is injective, then so is the B-module N⊗A I.

Proof. (1) Note that, if M and N are indecomposable bimodules, then all the statements in Lemma 4.1
have been proved in [4, Theorem 2.7, Corollary 3.1, Lemma 3.2] under the hypothesis of separability on the
semisimple quotient algebras A/rad(A) and B/rad(B). One can check that they are still valid without the
hypothesis of separability condition. In the following, we shall use [14, Theorem 2.2] to show Lemma 4.1
under the weaker assumption that M and N do not have any projective bimodules as direct summands.

Since A and B are stably equivalent of Morita type and do not have any semisimple direct summands, it
follows from [14, Proposition 2.1] that A and B have the same number of indecomposable direct summands
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(of two-sided ideals). Suppose that A = A1×A2× ·· · ×An and B = B1×B2× ·· · ×Bn, where all Ai and
all Bi themselves are indecomposable algebras. By the proof of [14, Theorem 2.2], we know that, up to
suitable reordering, for each 1 ≤ i ≤ n, there is an Ai-Bi-bimodule Mi and a Bi-Ai-bimodule Ni such that
Mi and Ni are direct summands of M and N as bimodules, respectively, and that Mi and Ni define a stable
equivalence of Morita type between Ai and Bi. Set M′ :=

L
1≤i≤n Mi and N′ :=

L
1≤i≤n Ni. Clearly, M′

and N′ are direct summands of M and N, respectively. Further, one can check directly that M′ and N′

also define a stable equivalence of Morita type between A and B. Since AMB and BNA do not have any
projective bimodules as direct summands, it follows from [16, Lemma 4.8] that M ' M′ as A-B-bimodules
and N ' N′ as B-A-bimodules. Note that Ai and Bi are indecomposable algebras, and Mi and Ni do not have
any projective bimodules as direct summands. Then, by [4, Lemma 2.1], we conclude that Mi and Ni are
indecomposable bimodules. This implies that Lemma 4.1 holds for the algebras Ai and Bi together with the
bimodules Mi and Ni for each i. Consequently, there are isomorphisms of B-A-bimodules: HomA(M,A) '
HomA(

L
1≤u≤n Mu,

L
1≤v≤n Av) 'L1≤u≤n HomA(Mu,Au) 'L1≤u≤n Nu ' N. Similarly, we can prove the

other statements in (1).
(2) Note that the pair (N⊗A−,M⊗B−) is an adjoint pair of functors if and only if AMB ' HomB(N,B)

as bimodules. Thus (2) is a consequence of (1).
(3) It follows from the proof of [23, Lemma 4.5] that the first part of (3) holds true, and that P and

Q are injective as one-sided modules. Furthermore, we claim that P is an injective bimodule. In fact, it
suffices to show that, for any indecomposable direct summand P′ of P, the bimodule AP′A is injective. Since
AP ∈ add(A⊗k Aop), there are primitive idempotents e1 and e2 of A such that P′ ∈ add(Ae1⊗k e2A). This
implies that Ae1 and e2A are injective modules because P′ is injective as a one-sided module. Thus P′ is an
injective bimodule, and so is P. Similarly, we can prove that Q is injective as a bimodule.

(4) We observe that there is an isomorphism of B-modules: N⊗A I 'HomA(M, I). Since MB is projective
and AI is injective, we see that HomA(M, I) is an injective B-module, and so is N⊗A I. This completes the
proof of Lemma 4.1. ¤

By Lemma 4.1, we have the following corollary, which provides examples such that the conditions of
Theorem 1.2 are satisfied. Note that the last statement in Corollary 4.2 below follows also from the proof of
[23, Lemma 4.5].

Corollary 4.2. Suppose that A and B are k-algebras. Assume that {e1, · · · ,en} and { f1, · · · , fm} are complete
sets of pairwise orthogonal primitive idempotents in A and in B, respectively. Let e be the sum of all those ei

for which Aei is projective-injective, and let f be the sum of all those f j for which B f j is projective-injective.
If M and N are indecomposable bimodules that define a stable equivalence of Morita type between A and B,
then Ne' N⊗A Ae ∈ add(B f ),M f 'M⊗B B f ∈ add(Ae), and Pe ∈ add(Ae).

Proof of Theorem 1.2. Let us remark that if A and B have no separable direct summands, then we may
assume that M and N have no non-zero projective bimodules as direct summands. In fact, If M = M′⊕M′′

and N = N′⊕N′′ such that M′ and N′ have no non-zero projective bimodules as direct summands, and that
M′′ and N′′ are projective bimodules, then it follows from [16, Lemma 4.8] that M′ and N′ also define a stable
equivalence of Morita type between A and B.

Suppose that AMB and BNA do not have any non-zero projective bimodules as direct summands, and
define a stable equivalence of Morita type between A and B. Then, it follows from Lemma 4.1(2) that
(M⊗B−,N⊗A−) and (N⊗A−,M⊗B−) are adjoint pairs.

First, we note that add(Ae) = add(M f ) and add(N⊗A M f ) = add(B f ). In fact, this follows from the
following equalities: add(Ae) = add(M⊗B N⊗A Ae) = add(M⊗B B f ) = add(M f ), and the fact that add(N⊗A

X) = add(N⊗A add(X)) for any A-module X .
Thus, if a statement for the idempotent element e holds true, then it can be proved similarly for f , and

vice versa.
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Second, we shall show that the bimodules eM f and f Ne satisfy the conditions of a stable equivalence of
Morita type between eAe and f B f .

(1) f Ne is projective as an f B f -module and as a right eAe-module, respectively.
In fact, we have f Ne'HomB(B f ,BNe) as f B f -eAe-bimodules. Since Ne ∈ add(B f ) by the definition of

f , we see that HomB(B f ,Ne) is projective as an f B f -module, that is, f Ne is projective as an f B f -module. To
see that f Ne is a projective right eAe-module, we notice that add(M f ) = add(M⊗B B f ) = add(M⊗B Ne) =
add(Ae), here we use the assumption M⊗B Ne ∈ add(Ae). Since (M⊗B −,N ⊗A −) is an adjoint pair, it
follows from HomB(B f ,BN⊗A Ae)'HomA(M⊗B B f ,Ae)'HomA(M f ,Ae) that f Ne is projective as a right
eAe-module since M f ∈ add(Ae). Thus (1) is proved.

(2) eM f is projective as an eAe-module and as a right f A f -module, respectively. The proof of (2) is
similar to that of (1), we omit it here.

(3) eM f ⊗ f B f f Ne' eAe⊕ ePe as bimodules.
Indeed, by the associativity of tensor products, we have the following isomorphisms of eAe-eAe-

bimodules:
eM f ⊗ f B f f Ne ' eM⊗B B f ⊗ f B f f B⊗B Ne

' eM⊗B B f ⊗ f B f Hom(B f ,B)⊗B Ne
' eM⊗B B f ⊗ f B f Hom(B f ,BNe) ( by Lemma 2.2 )
' eM⊗B Ne (by Lemma 2.1 ).

Since M and N define the stable equivalence of Morita type between A and B, we have M⊗B N ' A⊕P as
A-A-bimodules. This implies that eM f ⊗ f B f f Ne' eM⊗B Ne' e(A⊕P)e' eAe⊕ ePe as bimodules.

(4) ePe is a projective eAe-eAe-bimodule.
In fact, it suffices to show that, for any indecomposable direct summand P′ of the A-A-bimodule P, the

eAe-eAe-bimodule eP′e is projective. We assume eP′e 6= 0. Since P ∈ add(A⊗k Aop), there are primitive
idempotent elements e1 and e2 of A such that P′ ∈ add(Ae1 ⊗k e2A). Then AP′e ∈ add(Ae1 ⊗k e2Ae) ⊆
add(Ae1). This means that P′e is a direct sum of copies of Ae1. Since P′e ∈ add(Pe) ⊆ add(Ae), we
have Ae1 ∈ add(Ae). Consequently, eAe1 is a projective eAe-module. Now, we show that e2Ae is a
projective right eAe-module. Indeed, by Lemma 4.1(3), we have the following isomorphisms of Aop-
modules: eP ' HomA(Ae,P) ' HomA(Ae,HomA(P,A)) ' HomA(P⊗A Ae,A) ' HomA(Pe,A). This shows
that eP ∈ add(eA) since APe ∈ add(Ae). Thus eP′ ∈ add(eA). Since the right A-module eP′ is a direct sum of
copies of e2A, it follows that e2A ∈ add(eA) and e2Ae ∈ add(eAe). Consequently, e2Ae is a projective right
eAe-module. Hence eAe1⊗k e2Ae is a projective eAe-eAe-bimodule, and so is its direct summand eP′e. This
shows that ePe is a projective eAe-eAe-bimodule.

(5) Similarly, we can prove that f Ne⊗eM f ' f B f ⊕ f Q f as bimodules, and that the f B f - f B f -bimodule
f Q f is projective.

Thus, by definition, the bimodules eM f and f Ne define a stable equivalence of Morita type between eAe
and f B f .

Finally, the last statement of Theorem 1.2 follows from Proposition 4.3 below, which emphasizes the
view of functors.

Before we give the formulation of Proposition 4.3, we introduce here a few more notations: Set
Λ = EndeAe(eA), R = End f B f ( f N), Γ = End f B f ( f B), N′ = Hom f B f (( f B)Γ, f Ne⊗eAe (eA)Λ) and M′ =
HomeAe((eA)Λ,eM f ⊗ f B f ( f B)Γ).

Let ϕ : A→ Λ be the algebra homomorphism defined by sending a ∈ A to ϕa, where ϕa : eA→ eA,ex 7→
exa for x ∈ A. Similarly, we define an algebra homomorphism ψ : B→ Γ.
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Recall that, given a diagram of functors between categories:

A F //

H
²²

B
G

²²
C K // D,

we say that this diagram is commutative if there is a natural isomorphism α : GF → KH.

Proposition 4.3. (1) The following diagram of functors is commutative

A-mod
N⊗A− //

e·
²²

B-mod
M⊗B− //

f ·
²²

A-mod

e·
²²

eAe-mod
f Ne⊗eAe− // f B f -mod

eM f⊗ f B f− // eAe-mod.

In particular, f B f f Ne⊗eAe eA' f B f f N and eAeeM f ⊗ f B f f B'eAe eM.
(2) We have the following commutative diagram of functors

A-mod
N⊗A− //

ΛΛ⊗A−
²²

B-mod
M⊗B− //

ΓΓ⊗B−
²²

A-mod

ΛΛ⊗A−
²²

Λ-mod
ΓN′⊗Λ− // Γ-mod

ΛM′⊗Γ− // Λ-mod,

where the right A-module structure on Λ and the right B-module structure on Γ are induced by ϕ and ψ,
respectively. Moreover, ΓN′

Λ and ΛM′
Γ define a stable equivalence of Morita type between Λ and Γ.

Proof. (1) To prove that the first square in (1) is commutative, it is sufficient to show that there is a
natural transformation Φ : f Ne⊗eAe e(−) −→ f N⊗A−, which is an isomorphism. Now we define Φ to be
the composition of the following two natural transformations: for each X ∈ A-mod,

ΦX : f Ne⊗eAe eX ∼−→ f N⊗A Ae⊗eAe eX
id f N⊗µ−→ f N⊗A X ,

where µ : Ae⊗eAe eX → X is the multiplication map. Clearly, we need only to show that id f N ⊗µ is a natural
isomorphism, that is, for each AX , we have to show that

f N⊗A Ae⊗eAe eX −→ f N⊗A X

is an isomorphism.
Indeed, we shall first show that if Z ∈ A-mod and eZ = 0, then f N⊗A Z = 0. To prove this, we observe

that f N⊗A Z ' HomB(B f ,N⊗A Z)' HomA(AM⊗B B f ,Z), where the second isomorphism comes from the
adjoint pair (M⊗B−,N⊗A−). Since add(B f ) = add(N⊗A Ae) and Pe ∈ add(Ae), we have add(M⊗B B f ) =
add(Ae). Thus eZ = 0 implies that f N⊗A Z = 0. Next, we consider the exact sequence

0−→ Ker(µ)−→ Ae⊗eAe eX
µ−→ X −→ X/AeX −→ 0.

Note that eKer(µ) = 0 = e(X/AeX) and that f NA ' f B⊗B NA is a projective right A-module. By applying
the tensor functor f N⊗A− to the above sequence, we deduce that

f N⊗A Ae⊗eAe eX
id f N⊗µ−−−−→ f N⊗A X
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is an isomorphism. Thus we have proved the commutativity of the left square in (1).
Similarly, we can prove that the right square of the diagram in Proposition 4.3(1) commutes. In particular,

we see that f Ne⊗eAe eA' f NA as f B f -A-bimodules, and eM f ⊗ f B f f B' eMB as eAe-B-bimodules.
(2) Note that the bimodules HomeAe(eAΛ,eM f ⊗ f B f ( f N)R) and Hom f B f ( f NR, f Ne⊗eAe (eA)Λ) have

been constructed in [17, Theorem 1.1], which induced a stable equivalence of Morita type between Λ and R.
Since add( f N) = add( f B), we see that Hom f B f ( f B, f N) and Hom f B f ( f N, f B) induce a Morita equivalence
between R and Γ. As a result, N′ and M′ define a stable equivalence of Morita type between Λ and Γ. It can
be checked directly that ΓN′⊗Λ ΛA ' ΓN′

A and ΛM′⊗Γ ΓB ' ΛM′
B. So, we have

ΓN′⊗Λ ΛA ' ΓN′
A ' Hom f B f ( f B, f NA)

' Hom f B f ( f B, f B⊗B NA)
' ΓΓ⊗B NA

and
ΛM′⊗Γ ΓB ' ΛM′

B = HomeAe(eA,eM f ⊗ f B f f BB)
' HomeAe(eAΛ,eMB)
' HomeAe(eAΛ,eA⊗A MB)
' ΛΛ⊗A MB.

This implies that the diagram in (2) is commutative. Thus, we have proved Proposition 4.3. This also finishes
the proof of Theorem 1.2. ¤

Remarks. (1) In Theorem 1.2, the assumption that M and N do not have any projective bimodules as
direct summands is actually a very mild restriction. In fact, if M = X ′⊕X ′′ and N = Y ′⊕Y ′′ such that X ′

and Y ′ have no direct summands of projective bimodules, and that X ′′ and Y ′′ are projective bimodules, then
it follows from [16, Lemma 4.8] that the bimodules X ′ and Y ′ also define a stable equivalence of Morita type
between A and B. Clearly, we have X ′⊗BY ′e∈ add(Ae) and add(Y ′e)⊆ add(Ne). Since AX ′⊗B Ne is a direct
summand of AM⊗B Ne, we get X ′⊗B Ne ∈ add(Ae), and Y ′⊗A X ′⊗B Ne ∈ add(Y ′⊗A Ae) = add(Y ′e). This
gives Ne ∈ add(Y ′e). Hence add(Y ′e) = add(Ne). This means that M and N in Theorem 1.2 can be replaced
by the bimodules X ′ and Y ′.

(2) Note that M⊗B Ne ∈ add(Ae) is equivalent to Pe ∈ add(Ae). In Theorem 1.2, if e is an idempotent
element in A such that every indecomposable projective-injective A-module is isomorphic to a summand of
Ae, then Pe ∈ add(Ae). This follows immediately from Lemma 4.1(3).

(3) As pointed out in [4, Section 4], if e is an idempotent in A and if f is an idempotent in B such that
add(Ae) and add(B f ) are invariant under Nakayama functors, then eAe and f B f are self-injective, and any
stable equivalence of Morita type between A and B induces a stable equivalence of Morita type between eAe
and f B f . Note that we may recover this result from Theorem 1.2 since the idempotents e and f satisfy the
assumptions of Theorem 1.2 by [4, Lemma 4.1]. In general, however, our algebras eAe and f B f in Theorem
1.2 may not be self-injective.

Definition 4.4. [1] Let A be an algebra. A projective A-module W is called a minimal Wedderburn pro-
jective module if add(νA(W )) = add(I0(A)⊕ I1(A)), where νA is the Nakayama functor of A and 0 → A →
I0(A)→ I1(A) is the minimal injective copresentation of AA. An idempotent element e∈ A is called a minimal
Wedderburn idempotent element if Ae is a minimal Wedderburn projective module.

Auslander proved in [1] that, given e2 = e ∈ A, the canonical map ρ : A → EndeAe(eA) defined by the
right multiplication map is an isomorphism if and only if add(Ae) contains a minimal Wedderburn projective
A-module.

The following result shows that stable equivalences of Morita type preserve minimal Wedderburn projec-
tive modules or minimal Wedderburn idempotent elements.
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Lemma 4.5. Suppose that A and B are k-algebras such that A and B have no semisimple direct summands.
Assume that AMB and BNA do not possess any projective bimodules as direct summands, and induce a stable
equivalence of Morita type between A and B. Take a minimal Wedderburn idempotent e ∈ A and a minimal
Wedderburn idempotent f ∈ B. Then we have

add(M⊗B B f ) = add(Ae) and add(N⊗A Ae) = add(B f ).

Proof. We assume that M⊗B N ' A⊕P as A-A-bimodules for some projective A-A-bimodule P, and
N ⊗A M ' B⊕Q as B-B-bimodules for some projective B-B-bimodule Q. Note that, by Lemma 4.1, the
images of the functors AP⊗A− and BQ⊗B− consist of projective-injective modules.

Let 0→ A→ I0 → I1 and 0→ B→ J0 → J1 be minimal injective co-presentations of AA and BB, respec-
tively. We claim that

add(M⊗B (J0⊕ J1)) = add(I0⊕ I1) and add(N⊗A (I0⊕ I1)) = add(J0⊕ J1).

Clearly, for any A-module X , we have add(N⊗A add(X)) = add(N⊗A X). Since 0 → A → I0 → I1 is exact
and NA is projective, it follows that

0−→ BN −→ N⊗A I0 −→ N⊗A I1

is exact. Since BN⊗A DA is injective and add(BB) = add(BN), we see that add(J0⊕J1)⊆ add(N⊗A (I0⊕ I1)).
This implies that add(M⊗B (J0⊕J1))⊆ add(M⊗B N⊗A (I0⊕ I1)). Since P⊗A DA is projective-injective and
since all indecomposable projective-injective A-modules occur in I0, we have add(M⊗B N⊗A (I0⊕ I1)) =
add(I0 ⊕ I1). Thus, add(M⊗B (J0 ⊕ J1)) ⊆ add(I0 ⊕ I1). Furthermore, it follows from the injectivity of
the module AM⊗B DB and add(AA) = add(AM) that add(I0⊕ I1) ⊆ add(M⊗B (J0⊕ J1)). Thus add(M⊗B

(J0 ⊕ J1)) = add(I0 ⊕ I1). Similarly, we can prove that add(N ⊗A (I0 ⊕ I1)) = add(J0 ⊕ J1). Since e ∈ A
and f ∈ B are minimal Wedderburn idempotents, we see that add(I0⊕ I1) = add(νA(Ae)) and add(J0⊕J1) =
add(νB(B f )). Consequently, add(N⊗A νA(Ae)) = add(νB(B f )). It follows from N⊗A νA(Ae)' νB(N⊗AAe)
that add(νB(N⊗ AAe)) = add(νB(B f )). Since the Nakayama functor νB is an equivalence from B-proj to
B-inj, we deduce that add(N⊗A Ae) = add(B f ). Similarly, we can show that add(M⊗B B f ) = add(Ae). ¤

In the following we shall see that stable equivalences of Morita type can be transferred to “corner”
algebras of Wedderburn type.

Corollary 4.6. Suppose that A and B are k-algebras such that A and B have no semisimple direct summands.
Assume that AMB and BNA have no projective bimodules as direct summands, and induce a stable equivalence
of Morita type between A and B. Let e ∈ A and f ∈ B be minimal Wedderburn idempotents. Then eM f and
f Ne define a stable equivalence of Morita type between eAe and f B f such that f Ne⊗eAe eA ' f N and
eM f ⊗ f B f f B' eM as bimodules.

Proof. By Lemma 4.5, we see that the idempotents e and f satisfy the assumptions in Theorem 1.2. Then
Corollary 4.6 follows from the first part of Theorem 1.2 together with Proposition 4.3. ¤

As a corollary of Corollary 4.6, we get the following result.

Corollary 4.7. Assume that A and B are k-algebras without semisimple direct summands. Let AX be a
generator-cogenerator for A-mod, and let BY be a generator-cogenerator for B-mod. If EndA(X) and
EndB(Y ) are stably equivalent of Morita type, then there exist bimodules AMB and BNA which define a sta-
ble equivalence of Morita type between A and B such that add(AM⊗B Y ) = add(AX) and add(BN⊗A X) =
add(BY ).

15



Proof. Set R = EndA(X) and S = EndB(Y ). First, we show that if A does not have any semisimple direct
summands, then nor does R.

Suppose contrarily that R has a semisimple direct summand. Then R must have a simple projective-
injective module W . Since each indecomposable projective-injective R-module is isomorphic to a direct
summand of HomA(X ,DA), there exists an indecomposable injective A-module I such that W 'HomA(X , I).
Let AS be the socle of AI. Then HomA(X ,S) can be embedded into the simple R-module HomA(X , I), and
therefore HomA(X ,S)'HomA(X , I)'W as R-modules. Since A∈ add(X), we infer that S' I. Let AP be the
projective cover of AS. Then it follows from HomR(HomA(X ,P),HomA(X ,S))'HomA(P,S) 6= 0 that there is
a non-zero homomorphism from HomA(X ,P) to the simple projective R-module HomA(X ,S), which means
that HomA(X ,P) ' HomA(X ,S). Consequently, we get P ' S ' I. Thus A has a simple projective-injective
module, and therefore it has a semisimple direct summand, which is a contradiction. This shows that R has
no semisimple direct summands. Similarly, we can prove that S has no semisimple direct summands.

Note that, if X is a generator-cogenerator for A-mod, then HomA(X ,A) is a minimal Wedderburn
projective R-module. Similarly, HomB(Y,B) is a minimal Wedderburn projective S-module. Clearly,
EndR(HomA(X ,A)) ' A and EndS(HomB(Y,B)) ' B. Note that neither R nor S has semisimple direct sum-
mands. Then, by Corollary 4.6, there exist bimodules AMB and BNA which define a stable equivalence of
Morita type between A and B. Note that HomR(HomA(X ,A),R) ' AX and HomS(HomB(Y,B),S) ' BY . It
follows from Corollary 4.6 that add(AM⊗B Y ) = add(AX) and add(BN⊗A X) = add(BY ). ¤

Combining Corollary 4.7 with [17, Theorem 1.1], we have the following result on Auslander algebras.

Corollary 4.8. Let A and B be representation-finite k-algebras. Suppose that A and B have no semisimple
direct summands. Let Λ and Γ be the corresponding Auslander algebras of A and B, respectively. Then Λ
and Γ are stably equivalent of Morita type if and only if so are A and B.

For an algebra A, we denote by [A] the class of all algebras B such that there is a stable equivalence of
Morita type between B and A. It is known that [A] = [A×S] for any separable algebra S. Note that, if k is a
perfect field, then the class of all semisimple k-algebras is the same as that of all separable k-algebras.

The following result establishes a one-to-one correspondence, up to stable equivalence of Morita type, be-
tween representation-finite algebras and Auslander algebras. This is an immediate consequence of Corollary
4.8.

Corollary 4.9. Suppose that k is a perfect field. Let F be the set of equivalence classes [A] of representation-
finite k-algebras A under stable equivalences of Morita type, and let A be the set of equivalence classes [Λ] of
Auslander k-algebras Λ under stable equivalences of Morita type. Then there is a one-to-one correspondence
between F and A .

Finally, we remark that Corollary 4.8 is not true for derived equivalences. Nevertheless, it was shown in
[7] that if two representation-finite, self-injective algebras A and B are derived-equivalent then so are their
Auslander algebras. The converse of this statement is open. For further information on constructing derived
equivalences, we refer the reader to the current papers [6, 7].

5 Stable equivalences of Morita type based on self-injective algebras

Of particular interest are stable equivalences of Morita type between self-injective algebras or between those
related to self-injective algebras. Since derived equivalences between self-injective algebras imply stable
equivalences of Morita type by a result of Rickard [20], this makes stable equivalences of Morita type closely
related to the Broué abelian defect group conjecture which essentially predicates a derived equivalence be-
tween two block algebras [3], and thus also a stable equivalence of Morita type between them.
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In this section, we will apply Theorem 1.1 and Theorem 1.2 to self-injective algebras. It turns out that
the existence of a stable equivalence of Morita type between Φ-Auslander-Yoneda algebras of generators for
one finite admissible set Φ implies the one for all finite admissible sets.

Throughout this section, we fix a finite admissible subset Φ of N, and assume that A and B are in-
decomposable, non-simple, self-injective algebras. Let X be a generator for A-mod with a decomposition
X := A⊕

M

1≤i≤n

Xi , where Xi is indecomposable and non-projective such that Xi � Xt for 1 ≤ i 6= t ≤ n, and

let Y be a generator for B-mod with a decomposition Y := B⊕
M

1≤ j≤m

Yi, where Yj is indecomposable and

non-projective such that Yj � Ys for 1≤ j 6= s≤ m.

Lemma 5.1. (1) The full subcategory of EΦ
A (X)-mod consisting of projective-injective EΦ

A (X)-modules is
equal to add(EΦ

A (X ,A)). Particularly, if EΦ
A (X) 6= EndA(X), then dom.dim(EΦ

A (X)) = 0.
(2) EΦ

A (X) has no semisimple direct summands.

Proof. (1) For convenience, we set Λ0 = EndA(X) and Λ = EΦ
A (X). Since A is self-injective, it fol-

lows from [7, Lemma 3.5] that νΛ(EΦ
A (X ,A))' EΦ

A (X ,νAA)' EΦ
A (X ,DA) ∈ add

(
EΦ

A (X ,A)
)
. Consequently,

EΦ
A (X ,A) is a projective-injective Λ-module. We claim that, up to isomorphism, each indecomposable

projective-injective Λ-module is a direct summand of EΦ
A (X ,A). To prove this claim, it suffices to show

that EΦ
A (X ,Xi) is not injective for all 1≤ i≤ n. We denote EΦ

A (X ,Xi) by X̃i for abbreviation.
First, we observe that rad(Λ) = rad(Λ0) ⊕ Λ+, where Λ+ =

M

06=i∈Φ
Λi with Λi = ExtiA(X ,X) =

HomDb(A)(X ,X [i]). Since each summand HomDb(A)(X ,X [ j]) of X̃i is a Λ0-module and since the so-
cle of X̃i is the set of all elements x in X̃i such that rad(Λ)x = 0, we see that the socle of X̃i con-
tains

M

j∈Φ
{x ∈ socΛ0(Ext j

A(X ,Xi)) | Λ+x = 0}. By an argument of graded modules, we can even see that

socΛ(X̃i) =
M

j∈Φ
{x ∈ socΛ0(Ext j

A(X ,Xi)) | Λ+x = 0}.

Next, we shall show that X̃m is not injective for 1≤m≤ n. Indeed, let f : Xm → I be an injective envelope
of Xm with I an injective A-module. Then f ∗ : HomA(X ,Xm)→ HomA(X , I) is an injective envelope of the
Λ0-module HomA(X ,Xm) in Λ0-mod. Now, we consider the following two cases:

(a) If X̃m = HomA(X ,Xm), then X̃m is annihilated by Λ+. Since Xm is not injective in A-mod, we conclude
that HomA(X ,Xm) is not an injective Λ0-module, which implies that X̃m is not injective as a Λ-module.

(b) If X̃m 6= HomA(X ,Xm), then there is a positive integer t ∈ Φ such that ExttA(X ,Xm) 6= 0. We may
assume that t is the maximal number in Φ with this property, that is, ExtsA(X ,Xm) = 0 for any s ∈ Φ with
t < s. It follows that Λ+ExttA(X ,Xm) = 0, which implies that 0 6= socΛ0(ExttA(X ,Xm))⊆ socΛ(X̃m).

Now we consider socΛ0(HomA(X ,Xm)). Since f ∗ is an injective envelope in Λ0-mod, we know that
socΛ0(HomA(X ,Xm))' socΛ0(HomA(X , I)). Since νΛ0(HomA(X ,A)) ∈ add

(
HomA(X ,A)

)
and I ∈ add(AA),

we see that HomΛ0(HomA(X ,Xi),socΛ0(HomA(X , I))) = 0 for 1 ≤ i ≤ n. If e is the idempotent in Λ0 cor-
responding to the direct summand A of X , then esocΛ0(HomA(X , I)) = socΛ0(HomA(X , I)). Consequently,
esocΛ0(HomA(X ,Xm)) = socΛ0(HomA(X ,Xm)), that is, eg = g whenever g ∈ socΛ0(HomA(X ,Xm)), that is, g
factorizes through the regular module AA, say g = g1g2 with g1 : X → AA and g2 : AA→ Xm. Thus, for any el-
ement x∈HomDb(A)(X ,X [i]) with 0 6= i∈Φ, we have x ·g = x(g1[i] g2[i]) = (x g1[i])g2[i] = 0(g2[i]) = 0 since
A is self-injective. Thus Λ+socΛ0(HomA(X ,Xm)) = 0. This implies that socΛ0(HomA(X ,Xm)) ⊆ socΛ(X̃m).
Thus we have shown that the Λ-submodule socΛ0(HomA(X ,Xm))⊕ socΛ0(ExttA(X ,Xm)) of X̃m is contained in
the socle of X̃m. This implies that X̃m is not injective since its socle is not simple.

Thus add(EΦ
A (X ,A)) is just the full subcategory of EΦ

A (X)-mod consisting of projective-injective mod-
ules.
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Finally, we consider the dominant dimension of dom.dim(EΦ
A (X)). Suppose EΦ

A (X) 6= EndA(X). Since A
is self-injective, we have EΦ

A (X ,A) = HomA(X ,A). It follows that EΦ
A (X ,A) is annihilated by Λ+. Since

Λ cannot be annihilated by Λ+, we see that Λ cannot be cogenerated by EΦ
A (X ,A). This implies that

dom.dim(EΦ
A (X)) = 0. We finish the proof.

(2) Contrarily, we suppose that the algebra EΦ
A (X) has a semisimple direct summand. Then EΦ

A (X) has a
simple projective-injective module S. According to (1), we know that S must be a simple projective-injective
EndA(X)-module. Then it follows from the first part of the proof of Corollary 4.7 that A has a semisimple
direct summand. Clearly, this is contrary to our initial assumption that A is indecomposable and non-simple.
Thus EΦ

A (X) has no semisimple direct summands. ¤

Theorem 5.2. If the algebras EΦ
A (X) and EΦ

B (Y ) are stably equivalent of Morita type, then n = m and there
are bimodules AMB and BNA which define a stable equivalence of Morita type between A and B such that, up
to the ordering of indices, AM⊗B Yi ' Xi⊕Pi as A-modules, where APi is projective for all i with 1≤ i≤ n.
Moreover, for any finite admissible subset Ψ ofN, there is a stable equivalence of Morita type between EΨ

A (X)
and EΨ

B (Y ).

Proof. For convenience, we set Λ0 = EndA(X), Λ = EΦ
A (X), Γ0 = EndB(Y ) and Γ = EΦ

B (Y ). By Lemma
5.1, the algebras Λ and Γ have no semisimple direct summands. Let e be the idempotent in Λ0 corresponding
to the direct summand A of X , and let f be the idempotent in Γ0 corresponding to the direct summand B of
Y . Note that Λe' EΦ

A (X ,A) as Λ-modules and Γ f ' EΦ
B (Y,B) as Γ-modules. Clearly, eΛe' A and f Γ f ' B

as algebras. Moreover, we see that eΛ ' X as A-modules, and f Γ ' Y as B-modules. Suppose that a stable
equivalences of Morita type between Λ and Γ is given. By Corollary 4.2 and Lemma 5.1, we know that
the idempotent e in Λ and the idempotent f in Γ satisfy the conditions in Theorem 1.2. It follows from
Theorem 1.2 and Proposition 4.3(1) that there are bimodules AMB and BNA which define a stable equivalence
of Morita type between A and B such that add(M⊗B Y ) = add(X). By the given decompositions of X and Y ,
we conclude that n = m and, up to the ordering of direct summands, we may assume that AM⊗B Yi ' Xi⊕Pi

as A-modules, where APi is projective for all i with 1≤ i≤ n. Now, the last statement in this corollary follows
immediately from Theorem 1.1. Thus the proof is completed. ¤

Usually, it is difficult to decide whether an algebra is not stably equivalent of Morita type to another
algebra. The next corollary, however, gives a sufficient condition to assert when two algebras are not stably
equivalent of Morita type.

Corollary 5.3. Let n be a non-negative integer. Let W be an indecomposable non-projective A-module. Sup-
pose that Ωs

A(W ) 6'W for any non-zero integer s. Set Wn =
L

0≤i≤n Ωi
A(W ). Then, for any finite admissible

subset Ψ of N, the algebras EΨ
A (A⊕Wn⊕Ωl

A(W )) and EΨ
A (A⊕Wn⊕Ωm

A (W )) are not stably equivalent of
Morita type whenever m and l belong to N with n < m < l.

Proof. Suppose that there is a finite admissible subset Ψ of N such that EΨ
A (A⊕Wn ⊕Ωm

A (W )) and
EΨ

A (A⊕Wn ⊕Ωl
A(W )) are stably equivalent of Morita type for some fixed l,m ∈ N with n < m < l. Set

Φ1 = {0,1, · · · ,n} ∪ {l} and Φ2 = {0,1, · · · ,n} ∪ {m}. Then, by Theorem 5.2, we know that there exist
bimodules AMA and ANA which define a stable equivalence of Morita type between A and itself, and that there
is a bijection σ : Φ1 →Φ2 such that M⊗A Ω j

A(W )'Ωσ( j)
A (W )⊕Pj as A-modules, where Pj is projective for

each j ∈Φ1. In particular, we have M⊗A W 'Ωσ(0)
A (W )⊕P0. Since M is projective as a one-sided module,

we know that M⊗A Ωl
A(W )'Ωσ(0)+l

A (W )⊕P′l with P′l ∈ add(AA). Note that M⊗A Ωl
A(W )'Ωσ(l)

A (W )⊕Pl .
It follows that Ωσ(0)+l

A (W )'Ωσ(l)
A (W ). Consequently, we have σ(l) = σ(0)+ l ≥ l since W is not Ω-periodic.

Hence l ≤ σ(l) ≤ m < l, a contradiction. This shows that EΨ
A (A⊕Wn⊕Ωm

A (W )) and EΨ
A (A⊕Wn⊕Ωl

A(W ))
cannot be stably equivalent of Morita type whenever l and m ∈ N with n < m < l. ¤

This corollary will be used in the next section.
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6 A family of derived-equivalent algebras: application to Liu-Schulz alge-
bras

In this section, we shall apply our results in the previous sections to solve the following problem on derived
equivalences and stable equivalences of Morita type:

Problem. Is there any infinite series of finite-dimensional k-algebras such that they have the same di-
mension and are all derived-equivalent, but not stably equivalent of Morita type ?

This problem was originally asked by Thorsten Holm about ten years ago at a workshop in Goslar,
Germany.

Recall that Liu and Schulz in [13] constructed a local symmetric k-algebra A of dimension 8 and an
indecomposable A-module M such that all the syzygy modules Ωn

A(M) with n ∈ Z are 4-dimensional and
pairwise non-isomorphic. This algebra A depends on a non-zero parameter q∈ k, which is not a root of unity,
and has an infinite DTr-orbit in which each module has the same dimension. A thorough investigation of
Auslander-Reiten components of this algebra was carried out by Ringel in [22]. Based on this symmetric
algebra and a recent result in [6] together with the results in the previous sections, we shall construct an
infinite family of algebras, which provides a positive solution to the above problem.

From now on, we fix a non-zero element q in the field k, and assume that q is not a root of unity. The
8-dimensional k-algebra A defined by Liu-Schulz is an associative algebra (with identity) over k with

the generators: x0,x1,x2, and
the relations: x2

i = 0, and xi+1xi +qxixi+1 = 0 for i = 0,1,2.
Here, and in what follows, the subscript is modulo 3.

Let n be an arbitrary but fixed natural number, and let Φ = {0} or {0,1}. For j ∈ Z , set u j := x2 +q jx1,

I j := Au j, J j := u jA, I :=
nL

i=0
Ii and ΛΦ

j := EΦ
A (A⊕ I⊕ I j).

With these notations in mind, the main result in this section can be stated as follows:

Theorem 6.1. For any m≥ n+4, we have

(1) dimk(ΛΦ
m) = dimk(ΛΦ

m+1).

(2) gl.dim(ΛΦ
m) = ∞.

(3) dom.dim(ΛΦ
m) =

{
2 if Φ = {0},
0 if Φ = {0,1}.

(4) ΛΦ
m and ΛΦ

m+1 are derived-equivalent.

(5) If l > m, then ΛΦ
l and ΛΦ

m are not stably equivalent of Morita type.

An immediate consequence of Theorem 6.1 is the following corollary, which solves the above mentioned
problem positively.

Corollary 6.2. There exists an infinite series of finite-dimensional k-algebras Ai, i ∈ N, such that
(1) dimk(Ai) = dimk(Ai+1) for all i ∈ N,
(2) all Ai have the same global and dominant dimensions,
(3) all Ai are derived-equivalent, and
(4) Ai and A j are not stably equivalent of Morita type for i 6= j.

The proof of Theorem 6.1 will cover the rest of this section. Let us first introduce a few more notations
and conventions.

Let B be an algebra and S a subset of B. Set R(S) := {b ∈ B | sb = 0 for all s ∈ S} for the right annihilator
of S in B, and L(S) := {b ∈ B | bs = 0 for all s ∈ S} for the left annihilator of S in B. In case x ∈ B, we write
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R(x) and L(x) for R({x}) and L({x}), respectively. For y,z ∈ B, we set B(y,z) := {b ∈ B | L(y)bz = 0}, that
is, B(y,z) = {b ∈ B | L(y)b⊆ L(z)}. Note that L(S) and R(S) are left and right ideals in B, respectively.

Let V be a k-vector space with yi ∈V for 1≤ i≤ n ∈ N. We denote by < y1, . . . ,yn > the k-subspace of
V generated by all yi.

The following result is useful for our calculations, it may be of its own interest in describing the endo-
morphism rings of direct sums of cyclic left ideals.

Lemma 6.3. Let B be a k-algebra, and let x , y and z be elements in B. Then the following statements hold:
(1) There is an isomorphism of k-vector spaces:

ϕx,y : HomB(Bx,By) ∼−→ R(L(x))∩By,

which sends f to x f for f ∈ HomB(Bx,By).
(2) There is an isomorphism of k-vector spaces:

θx,y : HomB(Bx,By) ∼−→ B(x,y)/L(y),

which sends h to d +L(y) for h ∈ HomB(Bx,By), where d ∈ B such that xh = dy.
(3) Let · be the map defined by

(
B(x,y)/L(y)

)× (
B(y,z)/L(z)

)−→ B(x,z)/L(z)
(
a+L(y),b+L(z)

) 7→ (a+L(y)) · (b+L(z)) := ab+L(z).

Then there is the following commutative diagram:

HomB(Bx,By)×HomB(By,Bz)

oθx,y×θy,z

²²

µx,y,z // HomB(Bx,Bz)

oθx,z

²²
(B(x,y)/L(y))× (B(y,z)/L(z)) · // B(x,z)/L(z),

where µx,y,z is the composition map.
(4) Let n be a positive integer, and let xi be elements in B for 1≤ i≤ n. We define

MB(x1,x2, · · · ,xn) := {( bi, j )1≤i, j≤n | bi, j ∈ B(xi,x j)/L(x j) for all 1≤ i, j ≤ n }.

Then MB(x1,x2, · · · ,xn) becomes an associative k-algebra with the usual matrix addition and multi-
plication which is given by the products · defined in (3). Moreover, there is an algebra isomor-
phism θ : EndB(

L
1≤i≤n Bxi) −→ MB(x1,x2, · · · ,xn), defined by ( fi j)1≤i, j≤n 7→ (( fi j)θxi x j)1≤i, j≤n for fi j ∈

HomB(Bxi,Bx j).

Proof. (1) Let f ∈ HomB(Bx,By). Since f is a homomorphism of B-modules, we know b(x f ) = 0
whenever b ∈ B and bx = 0. This implies that x f ∈ R(L(x))∩By. Thus the map ϕx,y is well-defined. It is not
hard to check that ϕx,y is an isomorphism of k-vector spaces.

(2) For x ∈ B, we denote by ρx the right multiplication map from B to itself, defined by b 7→ bx for b ∈ B.

Then there is a canonical exact sequence of B-modules: δx : 0 → L(x) λx−→ B πx−→ Bx → 0, where λx is the
inclusion, and πx is the canonical multiplication of x. Note that if µx denotes the inclusion of Bx into B, then
ρx = πxµx for all x∈ B. By the definition of B(x,y), an element w belongs to B(x,y) if and only if λxρwπy = 0,
or equivalently, if and only if there is a unique α ∈HomB(Bx,By) such that ρwπy = πxα. Clearly, w ∈ L(y) if
and only if ρwπy = 0. So, we have L(y)⊆ B(x,y).
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First, we show that θx,y is well-defined. In fact, if f ∈ HomB(Bx,By), then there is an element b ∈ B,
which may not be unique, such that the following diagram of left B-modules commutes:

0 // L(x)

ρ′b
²²Â
Â
Â

λx // B
πx //

ρb

²²Â
Â
Â Bx

f
²²

// 0

0 // L(y)
λy // B

πy // By // 0,

where ρ′b is the restriction of ρb to L(x). Hence b ∈ B(x,y). If there is another d in B also making the above
diagram commutative, then (ρb−ρd)πy = 0, and therefore ρb−ρd factorizes through L(y). This implies that
b−d ∈ L(y) and b+L(y) = d +L(y) in B(x,y)/L(y). Thus θx,y is well-defined.

Next, we shall prove that θx,y is an isomorphism of k-vector spaces. Indeed, if ( f )θx,y = b+L(y) = 0 for
some map f ∈ HomB(Bx,By), then b ∈ L(y) and πx f = ρbπy = 0. Since πx is surjective, we get f = 0. Thus
θx,y is injective. That θx.y is surjective follows from the equivalent definitions of B(x,y) discussed above.

(3) Observe that B(x,y)B(y,z)⊆ B(x,z), L(y)B(y,z)⊆ L(z) and B(x,y)L(z)⊆ L(z) for all x,y,z ∈ B. This
implies that the product in (3) is well-defined. We leave the verification of the commutative diagram in (3) to
the reader.

(4) It follows from the commutative diagram in (3) that M(x1, · · · ,xn) is an associative k-algebra with
identity. To see that θ is an isomorphism of algebras, we first observe that θ is a k-linear isomorphism. It
remains to show that θ preserves the multiplication. However, this follows straightforward from the commu-
tative diagram in (3). ¤

Recall that, for i ∈ Z, we have defined ui := x2 +qix1, Ii := Aui and Ji := uiA. In the following lemma, we
display a few properties about the Liu-Schulz algebra A.

Lemma 6.4. [13, 22] (1) The Liu-Schulz algebra A is an N-graded algebra, namely, A =
L

i≥0 Ai with

A0 = k, A1 =< x0,x1,x2 >, A2 =< x0x1,x1x2,x2x0 >, A3 =< x0x1x2 >, and Ai = 0 for all i≥ 4.

Moreover, A2 is contained in the center of A. In particular, x0x1x2 = x1x2x0 = x2x0x1 in A.
(2) A is an 8-dimensional symmetric k-algebra.
(3) dimk(I j) = dimk(J j) = 4 for all j ∈ Z.
(4) ΩA(I j) = I j+1 and ΩA(J j+1) = J j for all j ∈ Z.
(5) The A-modules I j (respectively, Aop-modules J j) are pairwise non-isomorphic for all j ∈ Z.

In the next lemma, we calculate dimensions of homomorphism groups related to the modules Ii and Ji.

Lemma 6.5. Let i and j be integers. Then
(1) I j has a basis {x2 + q jx1,x2x0 − q j−1x0x1,x1x2,x0x1x2}, and J j has a basis {x2 + q jx1,x2x0 −

q j+1x0x1,x1x2,x0x1x2}.
(2) L(u j) = I j+1, R(u j+1) = J j.
(3) J j ' HomA(I j,A).

(4) As k-vector spaces, HomA(I j, Ii)' J j ∩ Ii =





< x2 +q jx1,x1x2,x0x1x2 > if j = i,
< x2x0−q j+1x0x1,x1x2,x0x1x2 > if j = i−2,
< x1x2,x0x1x2 > otherwise.

In particular, dimkHomA(I j, Ii) =
{

3 if j = i or i−2,
2 otherwise.

(5) dimkExt1A(I j, Ii) =
{

1 if j ≤ i≤ j +3,
0 otherwise.

(6) A(1,ui) = A and A(ui,1) = Ji.
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(7) A(u j,ui) =





< 1,x1,x2,x0x1,x1x2,x2x0,x0x1x2 > if j = i,
< x1,x2,x0x1,x1x2,x2x0,x0x1x2 > if j = i−2,
< x0,x1,x2,x0x1,x1x2,x2x0,x0x1x2 > otherwise.

Proof. (1) and (2). By definition, I j = Au j. One can check directly that

x0u j = (−q)(x2x0−q j−1x0x1), x2u j =−q j+1x1x2, x1u j = x1x2,

x1x2u j = x0x1x2u j = 0, x0x1u j = x0x1x2, x2x0uk = q jx0x1x2.

This implies that I j =< x2 + q jx1,x2x0 − q j−1x0x1,x1x2,x0x1x2 >. Note that 0 → L(u j) → A → Au j → 0
is an exact sequence of A-modules. Since u j+1u j = (x2 + q j+1x1)(x2 + q jx1) = 0, we have I j+1 ⊆ L(u j). In
addition, dimkI j+1 = dimkL(u j) = 4. It follows that L(u j) = I j+1. Similarly, we can prove the other statements
in (1) and (2) for J j.

(3) It follows from (2) that R(L(u j)) = R(Au j+1) = R(u j+1) = J j. By Lemma 6.3 (1), we get an isomor-
phism ϕuj,1 : HomA(I j,A)' J j of k-vector spaces. In fact, we can check directly that ϕuj,1 is an isomorphism
of Aop-modules. This proves (3).

(4) Note that HomA(I j, Ii) = HomA(Au j,Aui)' u jA∩Aui = J j ∩ Ii. To prove (4), there are three cases to
be considered.

Case 1: j = i. By (1) and (2), we conclude that < x2 +q jx1,x1x2,x0x1x2 >⊆ I j ∩ J j. Since dimk(I j) = 4
and x2x0−q j+1x0x1 6∈ I j, we get dimk(I j ∩ J j) = 3. As a result, I j ∩ J j =< x2 +q jx1,x1x2,x0x1x2 >.

Case 2: j = i− 2. Note that x2x0 − q j+1x0x1 = x2x0 − qi−1x0x1. But x2 +q jx1 /∈ Ii. It follows that
Ii∩ J j =< x2x0−q j+1x0x1,x1x2,x0x1x2 >.

Case 3: j 6∈ {i, i− 2}. We claim that Ii ∩ J j =< x1x2,x0x1x2 >. Obviously, < x1x2, x0x1x2 > is con-
tained in Ii∩ J j. Conversely, if λ ∈ Ii∩ J j, then there are elements a1,a20,a21,a3,b1,b20,b21 and b3 ∈ k, such
that λ = a1(x2 +q jx1)+a20(x2x0−q j+1x0x1)+a21x1x2 +a3x0x1x2 = b1(x2 +qix1)+b20(x2x0−qi−1x0x1)+
b21x1x2 + b3x0x1x2. This implies that a1 = b1, a3 = b3, a20 = b20, a21 = b21, a1q j = b1qi, and a20q j+1 =
b20qi−1. Consequently, a1 = a20 = 0, which means that λ ∈< x1x2,x0x1x2 >. Thus Ii∩J j =< x1x2,x0x1x2 >.

(5) The exact sequence 0 → I j+1 → A → I j → 0 of A-modules induces the following exact sequence of
k-modules:

0−→ HomA(I j, Ii)−→ HomA(A, Ii)−→ HomA(I j+1, Ii)−→ Ext1A(I j, Ii)−→ 0.

By (4), we have

dimkHomA(I j, Ii) =
{

3 if i ∈ { j, j +2},
2 otherwise.

Since dimk(Ii) = 4, we have

dimkExt1A(I j, Ii) =
{

1 if j ≤ i≤ j +3,
0 otherwise.

This proves (5).
(6) By definition, we know that A(1,ui) = A, and A(ui,1) = R(ui+1) = Ji.
(7) It follows from (4) and Lemma 6.3(2) that

dimkA(u j,ui) =
{

7 if j = {i−2, i},
6 otherwise.

By definition, we know that A(u j,ui) = {a ∈ A | u j+1aui = 0}. It is not hard to see that

< x1,x2,x0x1,x1x2,x2x0,x0x1x2 >⊆ A(u j,ui).
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Hence, if j 6∈ {i−2, i}, then A(u j,ui) =< x1,x2,x0x1,x1x2,x2x0,x0x1x2 >. If j = i, then u j+1u j = 0, and there-
fore 1 ∈ A(u j,u j). Thus A(u j,u j) =< 1,x1,x2,x0x1,x1x2,x2x0,x0x1x2 >. If j = i−2, then we can check that
u j+1x0u j+2 = 0. Thus, x0 ∈ A(u j,u j+2). This shows that A(u j,u j+2) =< x0,x1,x2,x0x1,x1x2,x2x0,x0x1x2 >.
¤

For higher cohomological groups, we have the following estimation.

Lemma 6.6. Let t be an integer and j a positive integer. Then

(1) dimkExt j
A(I0, It) =

{
1 if −1≤ t− j ≤ 2,
0 otherwise.

(2) dimkExt j
A(It , I0) =

{
1 if −2≤ t + j ≤ 1,
0 otherwise.

(3) Ext j
A(I0, I0) = 0 for j > 1.

Proof. By Lemma 6.4, we have Ext j
A(I0, It) ' Ext1A(I0,Ω

− j+1
A (It)) ' Ext1A(I0, It− j+1). Now (1) follows

from Lemma 6.5(5). Similarly, we can prove (2). Clearly, (3) follows from (1) and (2). ¤
Here and subsequently, δ j stands for the canonical exact sequence 0→ I j+1 → A→ I j → 0 in A-mod for

each j ∈ Z.

Lemma 6.7. Let l ∈ Z and n ∈ N. Then

{ j ∈ Z | δ j is an add(A⊕ Il)-split sequence in A-mod}= { j ∈ Z | j > l +2 or j < l−3}.

In particular, we have

{ j ∈ Z | δ j is an add(A⊕
nL

i=0
Ii)-split sequence in A-mod}= { j ∈ Z | j > n+2 or j <−3}.

Proof. For any j ∈ Z, we know that δ j is an add(A⊕ Il)-split sequence in A-mod if and only if
Ext1A(Il, I j+1) = Ext1A(I j, Il) = 0, which is equivalent to the condition that j +1 6∈ [l, l +3] and j 6∈ [l−3, l] by
Lemma 6.5(5). Thus we have (1). Clearly, (2) follows from (1) immediately. ¤

The following result can be directly deduced from the work in [6, Theorem 1.1] and [9, Theorem 4.1].

Lemma 6.8. Let B be a k-algebra. Let Y and M be B-modules with M a generator for B-mod. If
Ext1B(M,ΩB(Y )) = Ext1B(Y,M) = 0, then the endomorphism algebras EndB(M⊕Y ) and EndB(M⊕ΩB(Y ))
are derived-equivalent. If, in addition, Ext2B(M,ΩB(Y )) = Ext2B(Y,M) = 0, then the {0,1}-Auslander-Yoneda
algebras E{0,1}

B (M⊕Y ) and E{0,1}
B (M⊕ΩB(Y )) are derived-equivalent.

Having made the previous preparations, now we can prove Theorem 6.1.

Proof of Theorem 6.1. Let m≥ n+4. Set M := A⊕ I with I =
nL

i=0
Ii, and Vm := M⊕ Im.

(1) By Lemma 6.5(5), we know that Ext1A(M, Im) = Ext1A(Im,M) = 0. Clearly, we have

dimk(Λ
{0}
m ) = dimkEndA(M)+dimkHomA(M, Im)+dimkHomA(Im,M)+dimkEndA(Im)

and
dimk(Λ

{0,1}
m ) = dimk(Λ

{0}
m )+dimkExt1A(M,M)+dimkExt1A(Im, Im).

By Lemma 6.5, we get

dimkEndA(Im) = 3, dimkExt1A(Im, Im) = 1, dimkHomA(M, Im) = dimkHomA(Im,M) = 2n+6.
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It follows that dimk(ΛΦ
m) = dimk(ΛΦ

m+1).

(2) We first show that gl.dim(Λ{0}
m ) = ∞. By Lemma 6.5 (5), we have Ext1A(Vm, I j) = 0 for any j < 0.

Note that, for any t < j < 0, there is a long exact sequence

0−→ I j −→ A−→ A−→ ·· · −→ A−→ It −→ 0.

It follows that the induced sequence

0−→ HomA(Vm, I j)−→ HomA(Vm,A)−→ ·· · −→ HomA(Vm,A)−→ HomA(Vm, It)−→ 0

is exact. Since HomA(Vm,A) is a projective-injective indecomposable Λ{0}
m -module, we have

inj.dimΛ{0}
m

HomA(Vm, I j) = ∞ for all j < 0, where inj.dim denotes the injective dimension of modules. Hence

gl.dim(Λ{0}
m ) = ∞. Note that there is a canonical surjective homomorphism π : Λ{0,1}

m → Λ{0}
m of algebras.

Thus every Λ{0}
m -module can be regarded as a Λ{0,1}

m -module. In addition, E{0,1}
A (Vm,A) = HomA(Vm,A). It

follows that inj.dimΛ{0,1}
m

HomA(Vm, I j) = ∞ for all j < 0. This yields gl.dim(Λ{0,1}
m ) = ∞.

(3) Recall a classical result on dominant dimension: Let B an algebra and Y be a generator-cogenerator for
B-mod. Suppose that s is a non-negative integer. Then dom.dim(EndB(Y )) = s+2 if and only if ExtiB(Y,Y ) =
0 for all i with 1 ≤ i ≤ s, but Exts+1

B (Y,Y ) 6= 0. In our case, we take Y := Vm and s = 0. By Lemma 6.5(5),
we know that Ext1A(I0, I0) 6= 0, which means that Ext1A(Vm,Vm) 6= 0. Note that Vm is a generator-cogenerator
for A-mod. Thus dom.dim(Λ{0}

m ) = 2. By Lemma 5.1, we have dom.dim(Λ{0,1}
m ) = 0.

(4) Consider the exact sequence

δm : 0−→ Im+1 −→ A−→ Im −→ 0

in A-mod. Since m ≥ n + 4, it follows from Lemma 6.5(5) and Lemma 6.4(4) that Ext1A(M, Im+1) =
Ext1A(Im+1,M) = Ext1A(Im,M) = Ext1A(M, Im) = 0. Note that A is self-injective. By Lemma 6.8, we conclude
that the algebras ΛΦ

m and ΛΦ
m+1 are derived-equivalent for Φ = {0} or {0,1}.

(5) It follows from Lemma 6.4 that ΩA(I j) = I j+1 for each j ∈ Z and that the A-modules I j are pairwise
non-isomorphic for all j ∈ Z. Now, we define W := I0 and Wn := ⊕0≤ j≤nI j. Then, by Corollary 5.3, the
algebras ΛΦ

l and ΛΦ
m are not stably equivalent of Morita type if l > m. Thus the proof is completed. ¤

In the rest of this section, we consider the special case: n = 0 and Φ = 0 in Theorem 6.1. For convenience,
we set Λm := EndA(A⊕ I0 ⊕ Im) for m ∈ Z, and define C :=< 1,x1,x2,x0x1,x1x2,x2x0,x0x1x2 >, T :=<
x1,x2,x0x1,x1x2,x2x0,x0x1x2 >, and S := T⊕< x0 >. Note that they all are subspaces of A.

Proposition 6.9. Let m be an integer. Then
(1) If m 6= 2, then Λm is isomorphic to the algebra

MA(1,u0,um) :=




A A/I1 A/Im+1
J0 C/I1 T/Im+1
Jm T/I1 C/Im+1


 .

(2) Λ2 is isomorphic to the algebra

MA(1,u0,u2) :=




A A/I1 A/I3
J0 C/I1 S/I3
J2 T/I1 C/I3


 .

(3) Suppose m ≥ 3. Then, for any l > m, the algebras Λl and Λm are derived-equivalent, but not stably
equivalent of Morita type.
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Proof. (1) and (2) follow easily from Lemma 6.3(4) and Lemma 6.5, while (3) can be concluded from
Lemma 6.7, Lemma 6.8 and Corollary 5.3. ¤

For each positive integer m≥ 3, the algebra Λm is given by the following quiver Q with relations ρm:

Q : •
γm // •
δ3 1

oo

α

¥¥ β // •
γ0 2

oo

ρm : α2 = γ0βγ0αβ = γmαδγmδ = 0;

(
αβγ0

αδγm

)
= 1

q−qm+1

(
qm+2−1 1−q2

qm+2−qm qm−q2

)(
βγ0α
δγmα

)
;

βγ0 β
1−q = δγm β

qm−q ,
βγ0 δ

1−qm+1 = δγm δ
qm−qm+1 ;

γ0 βγ0
1−q = γ0 δγm

1−qm+1 ,
γm βγ0
qm−q = γm δγm

qm−qm+1 .

The Cartan matrix of Λm for m≥ 3 is

C =




8 4 4
4 3 2
4 2 3


 ,

which is symmetric. Moreover, there is an anti-automorphism on Λm for (m≥ 3), which is given by

e1 7→ e1, e2 7→ e3, e3 7→ e2, β 7→ γm, γm 7→ qmβ, α 7→ α, δ 7→ γ0, γ0 7→ δ.

It follows from Proposition 6.9 that Λt , t ≥ 3, are pairwise derived-equivalent, but not stably equivalent
of Morita type.

Note that the Cartan matrix of Λ2 is not symmetric. Thus Λ2 is not derived-equivalent to Λm for m ≥ 3
since the Cartan matrices of two derived-equivalent algebras are congruent over Z, and therefore derived
equivalences preserve the symmetry of Cartan matrices. We don’t know whether Λ1 and Λ3 are derived-
equivalent or not.

It would be interesting to show that the family of algebras in Theorem 6.1 or in Proposition 6.9 are
pairwise not stably equivalent.
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