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Abstract

In this paper, we introduce ®-Auslander-Yoneda algebras in a triangulated category with &
a parameter set in N, and present a method to construct new derived equivalences between these
®-Auslander-Yoneda algebras (not necessarily Artin algebras), or their quotient algebras, from a
given almost v-stable derived equivalence. As consequences of our method, we have: (1) Suppose
that A and B are representation-finite, self-injective Artin algebras with 4X and gY additive gener-
ators for A and B, respectively. If A and B are derived-equivalent, then the ®-Auslander-Yoneda
algebras of X and Y are derived-equivalent for every admissible set ®. In particular, the Auslan-
der algebras of A and B are both derived-equivalent and stably equivalent. (2) For a self-injective
Artin algebra A and an A-module X, the ®-Auslander-Yoneda algebras of A® X and A ® Q4(X)
are derived-equivalent for every admissible set ®, where Q is the Heller loop operator. Motivated
by these derived equivalences between ®-Auslander-Yoneda algebras, we consider constructions
of derived equivalences for quotient algebras, and show, among other results, that a derived equiv-
alence between two basic self-injective algebras may transfer to a derived equivalence between
their quotient algebras obtained by factorizing out socles.

1 Introduction

Derived categories and derived equivalences were introduced by Grothendieck and Verdier in [13].
As is known, they have widely been used in many branches of mathematics and physics. One of the
fundamental problems in the study of derived categories and derived equivalences is: how to construct
derived equivalences ? On the one hand, Rickard’s beautiful Morita theory for derived categories can
be used to find all rings that are derived-equivalent to a given ring A by determining all tilting com-
plexes over A (see [10] and [11]). On the other hand, a natural course of investigation on derived equiv-
alences should be constructing new derived equivalences from given ones. In this direction, Rickard
used tensor products and trivial extensions to produce new derived-equivalences in [10, 12], Barot and
Lenzing employed one-point extensions to transfer certain a derived equivalence to a new one in [2].
Up to now, however, it seems that not much is known for constructing new derived equivalences based
on given ones.

In this paper, we continue the consideration in this direction and provide, roughly speaking, two
methods to construct new derived equivalences from given ones. One is to form ®-Auslander-Yoneda
algebras (see Section 3.1 for definition) of generators, or cogenerators over derived-equivalent alge-
bras, and the other is to form quotient algebras of derived-equivalent algebras. We point out that
our family of ®-Auslander-Yoneda algebras include Auslander algebras, generalized Yoneda algebras
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and some of their quotients. Thus our method produces also derived equivalences between infinite-
dimensional algebras.

To state our results, we first introduce a few terminologies.

Suppose that F is a derived equivalence between two Artin algebras A and B, with the quasi-inverse
functor G. Further, suppose that

T.: —)O—)Tin—)_>T71_)TO_>O_)
is a radical tilting complex over A associated to F', and suppose that

isa radLal tilting complex overll_R associated to q:_ The functor F is called almost v-stable if add( L i
=add( " ,vaT’), and add( 7, T") =add( }_,vgT'), where v, is the Nakayama functor for A.
We have shown in [6] that an almost v-stable functor F induces an equivalence functor £ between
the stable module categories A-mod and B-mod. For further information on almost v-stable derived
equivalences, we refer the reader to [6].

For a module M over an algebra A, the generalized Yoneda algebra of M is defined by Ext} (M) :=

0 Exty (M,M). In case M = A/rad(A), the algebra Ext} (M) is called the Yoneda algebra of A in

literature. We shall extend this notion to a more general situation, and introduce the ®-Auslander-
Yoneda algebras with ® a parameter set in N (for details see Subsection 3.1 below). We notice that a
®-Auslander-Yoneda algebra may not be an Artin algebra in general.

Our main result on ®-Auslander-Yoneda algebras of modules reads as follows:

Theorem 1.1. Let A and B be two Artin algebras, and let F : A-mod — B-mod be the stable equiv-

alence induced by an almost v-stable derived equivalence F between A and B. Suppose that X is an

A-module, we set M :=A@®X and N :=B®F (X )LLet ® be an admissible subset of N, and define the
®-Auslander-Yoneda algebra of M as BX (M) := ;.o Exti (M, M). Then:

(1) The ®-Auslander-Yoneda algebras ES (M) and E§ (N) are derived-equivalent.

(2) If @ is finite, then there is an almost v-stable derived equivalence between ES (M) and EE (N).
Thus ES (M) and ER (N) are also stably equivalent. In particular, there is an almost v-stable derived
equivalence and a stable equivalence between Ends (M) and Endg(N).

A dual version of Theorem 1.1 can be seen in Corollary 3.17 below.

Since Auslander algebra and generalized Yoneda algebra are two special cases of ®-Auslander-
Yoneda algebras, Theorem 1.1 provides a large variety of derived equivalences between Auslander
algebras, and between generalized Yoneda algebras, or their quotient algebras. Note that Theorem
1.1 (2) extends a result in [6, Proposition 6.1], where algebras were assumed to be finite-dimensional
over a field, in order to employ two-sided tilting complexes in proofs, and where only endomorphism
algebras were considered instead of general Auslander-Yoneda algebras. The existence of two-sided
tilting complexes is guaranteed for Artin R-algebras that are projective as R-modules [11]. For general
Artin algebras, however, we do not know the existence of two-sided tilting complexes. Hence, in this
paper, we have to provide a completely different proof to the general result, Theorem 1.1.

As adirect consequence of Theorem 1.1, we have the following corollary concerning the Auslander
algebras of self-injective algebras.

Corollary 1.2. (1) For a self-injective Artin algebra A and an A-module Y, the ®-Auslander-Yoneda
algebras ES (A®Y) and ES (A @© Qa(Y)) are derived-equivalent, where Q is the Heller loop operator:
(2) Suppose that A and B are self-injective Artin algebras of finite representation type with X and
gY additive generators for A-mod and B-mod, respectively. If A and B are derived-equivalent, then
(i) the Auslander algebras of A and B are both derived and stably equivalent.
(ii) The generalized Yoneda algebras Ext} (X ) and Extz(Y) of X and Y are derived-equivalent.



Notice that, in Corollary 1.2, the Auslander algebra of A is a quotient algebra of the generalized
Yoneda algebra Ext} (X) of the additive generator X. The next result shows another way to construct
derived equivalences for quotient algebras.

Theorem 1.3. Let F : 2°(A) — 9°(B) be a derived equivalence between two self-injective basic
Artin algebras A and B. Suppose that P is a direct summand of 4A, and Q is a direct summand of gB
such that F (soc(P)) is isomorphic to soc(Q), where soc(P) denotes the socle of the module P. Then
the quotient algebras A /soc(P) and B/soc(Q) are derived-equivalent.

The structure of this paper is organized as follows. In Section 2, we make some preparations for
later proofs. In Section 3, we introduce the ®-Auslander-Yoneda algebras and prove Theorem 1.1
and its dual version, Corollary 3.17, which produces derived equivalences between the endomorphism
algebras of cogenerators. Furthermore, we deduce a series of consequences of Theorem 1.1 for self-
injective algebras, including Corollary 1.2. In Section 4, we provide several methods to construct
derived equivalences for quotient algebras. First, we give a general criterion, and then apply it to self-
injective algebras modulo socles, and to algebras modulo annihilators. In particular, we show Theorem
1.3, and point out a class of derived equivalences satisfying the conditions in Theorem 1.3.

2 Preliminaries

In this section, we shall recall basic definitions and facts on derived categories and derived equiva-
lences, which are elementary elements in our proofs.

Throughout this paper, R is a fixed commutative Artin ring. Given an R-algebra A, by an A-
module we mean a unitary left A-module; the category of all finitely generated A-modules is denoted
by A-mod, the full subcategory of A-mod consisting of projective (respectively, injective) modules
is denoted by A-proj (respectively, A-inj). The stable module category A-mod of A is, by definition,
the quotient category of A-mod modulo the ideal generated by homomorphisms factorizing through
projective modules. An equivalence between the stable module categories of two algebras is called a
stable equivalence

An R-algebra A is called an Artin R-algebra if A is finitely generated as an R-module. For an
Artin R-algebra A, we denote by D the usual duality on A-mod, and by v4 the Nakayama functor
DHomy (—,4A) : A-proj — A-inj. For an A-module M, we denote by Q4 (M) the first syzygy of M,
and call Q4 the Heller loop operator of A. In this paper, we mainly concentrate us on Artin algebras
and finitely generated modules.

Let C be an additive category.

For two morphisms f: X — Y and g: Y — Z in C, we write fg for their composition. But for
two functors F : C — D and G : D — ‘E of categories, we write GF for their composition instead
of FG. For an object X in C, we denote by add(X) the full subcategory of C consisting of all direct
summands of finite direct sums of copies of X. An object X in ( is called an additive generator for C

ifadd(X) = C.
By a complex X*® over C we mean a sequence of morphisms d between objects X' in C: -+ —
. di . di+] . . X . .
X X X X2 L such that didi! = 0 for all i € Z, and write X* = (X', d%). For a complex

X*, the brutal truncation 6-;X* of X*® is a subcomplex of X* such that (6-;X*)* is X* for all k < i
and zero otherwise. Similarly, we define 6>;X*®. For a fixed n € Z, we denote by X*[n] the complex
obtained from X*® by shifting n degrees, that is, (X*[n])? = X".

The category of all complexes over C with chain maps is denoted by € (C). The homotopy cate-
gory of complexes over ( is denoted by % (C). When ( is an abelian category, the derived category
of complexes over C is denoted by Z(C). The full subcategory of J#(C) and Z(C) consisting of



bounded complexes over  is denoted by .#®(C) and 2°(C), respectively. As usual, for an algebra A,
we simply write €’ (A) for €' (A-mod), .# (A) for # (A-mod) and .#°(A) for #®(A-mod). Similarly,
we write Z(A) and 2°(A) for Z(A-mod) and Z°(A-mod), respectively.

It is well-known that, for an R-algebra A, the categories .# (A) and Z(A) are triangulated cate-
gories. For basic results on triangulated categories, we refer the reader to the excellent books [3] and
[9].

Let A be an Artin algebra. Recall that a homomorphism f : X — Y of A-modules is called a radical
map if, for any module Z and homomorphisms /#: Z — X and g : Y — Z, the composition /fg is not
an isomorphism. A complex over A-mod is called a radical complex if all of its differential maps are
radical maps. Every complex over A-mod is isomorphic to a radical complex in the homotopy category
J (A). If two radical complexes X*® and Y* are isomorphic in . (A), then X* and Y* are isomorphic
in%(A).

Two R-Artin algebras A and B are said to be derived-equivalent if their derived categories 2°(A)
and 2°(B) are equivalent as triangulated categories. By a result of Rickard (see Lemma 2.2 below),
two algebras A and B are derived-equivalent if and only if B is isomorphic to the endomorphism
algebra End jv(4)(7*) of a tilting complex 7* over A. Recall that a complex 7° in % b(A-proj) is
called a tilting complex over A if it satisfies

(1) Hom%b(A_pmj)(T’, T*[n]) =0 forall n # 0, and

(2) add(T*) generates .#°(A-proj) as a triangulated category.

It is known that, given a derived equivalence F between A and B, there is a unique (up to iso-
morphism in .7 (A)) tilting complex T* over A such that F(T*®) ~ B. This complex T* is called a
tilting complex associated to F. Recall that a complex X* of A-modules is called self-orthogonal if
Homn(4)(X*,X*[i]) = O for every i # 0.

The following lemma, proved in [6, Lemma 2.2], will be used frequently in our proofs below.

Lemma 2.1. Let A be an arbitrary ring with identity, and let A-Mod be the category of all left (not
necessarily finitely generated) A-modules. Suppose that X* is a complex over A-Mod bounded above,
and that Y* is a complex over A-Mod bounded below. Let m be an integer. If one of the following two
conditions holds:

(1) X' is projective for all i > m and Y’ = 0 for all j < m,

(2) Y/ is injective for all j < m and X' = 0 for all i > m,
then the localization functor © : ¥ (A-Mod) — Z(A-Mod) induces an isomorphism Ox. ys :

Hom,, (s Mod) (X*,Y*) — Homg, Mog) (X*,Y*).

Thus, for the complexes X* and Y* given in Lemma 2.1, the computation of morphisms from X*®
to Y* in Z(A-Mod) is reduced to that in # (A-Mod).

For later reference, we cite the following fundamental result on derived equivalences by Rickard
(see [10, Theorem 6.4]) as a lemma.

Lemma 2.2. [10] Let A and T be two rings. The following conditions are equivalent:

) A&~ (A-Proj) and ¢~ (I'-Proj) are equivalent as triangulated categories;
)2°(A-Mod)and 7°(T'-Mod) are equivalent as triangulated categories;

) #°(A-Proj) and #°(T-Proj) are equivalent as triangulated categories;

) 2 °(A-proj) and ¢ ®(T-proj) are equivalent as triangulated categories;

(e) T is isomorphic to End(T), where T is a tilting complex in #°(A-proj).

Here A-Proj stands for the full subcategory of A-Mod consisting of all projective A-modules.

(a
(b
(¢
(d

Two rings A and I" are called derived-equivalent if one of the above conditions (a)-(e) is satisfied.
For Artin algebras, the two definitions of a derived equivalence coincide with each other.



3 Derived equivalences for ®-Auslander-Yoneda algebras

As is known, Auslander algebra is a key to characterizing representation-finite algebras, and Yoneda
algebra plays a role in the study of the graded module theory of Koszul algebras. In this section, we
shall first unify the two notions and introduce the so-called ®-Auslander-Yoneda algebra of an object
in a triangulated category, where @ is a parameter subset of N, and then construct new derived equiva-
lences between these ®-Auslander-Yoneda algebras from a given almost v-stable derived equivalence.
In particular, Theorem 1.1 will be proved, and a series of its consequences will be deduced in this
section.

3.1 Admissible sets and Auslander-Yoneda algebras

First, we introduce some special subsets of the set N:= {0,1,2,-- -, } of the natural numbers, and then
define a class of algebras called Auslander-Yoneda algebras.

A subset ® of N containing O is called an admissible subset of N if the following condition is
satisfied:

Ifi,jand k are in @ such that i+ j+k € ®, theni+ j € ®ifand only if j+k € P.

For instance, the sets {0,3,4}, {0,1,2,3,4} are admissible subsets of N. The following is a family
of admissible subsets of N.
Let n be a positive integer, and let m be a positive integer or positive infinity. We define

P(n,m):={xn|xeN,0<x<m+1}.

Then ®(n,m) is an admissible subset in N. Clearly, we have ®(1,00) =N, ®(1,0) = {0}, and ®(1,m) =
{0,1,2,--- ,m}.
Admissible subsets of N have the following simple properties.

Proposition 3.1. (1) If @ is an admissible subset of N, then so is m® := {mx | x € ®} for every m € N.
(2) If ®1 and @, are admissible subsets of N, then so is ®; N D,. Moreover, the intersection of a
Sfamily of admissible subsets of N is admissible.
(3) For a subset ® C N with 0 € ®, the set D" := {x" | x € @} is an admissible subset of N for
every integer m > 3.

Proof. The statements (1) and (2) follow easily from the definition of an admissible subset. Now
we consider (3). We pick an integer m > 3. Let i, j™ k™ and ["* be in @™ such that i + ;™ + k™ = [".
If i" + j € @™, then i" + j™ = ¢" for some ¢t € ®. By Fermat’s Last Theorem, one of the integers i
and j is zero. If j =0, then j” 4+ k" = k™ € ®". If i =0, then j" + k™ = I"" € ®™. Similarly, we can
show that if j” + k™ € @™, then i + j” € ®. Hence the set " is an admissible subset of N. [

Note that @ is not necessarily admissible in N even if & is an admissible subset of N. For instance,
if ® = {0,3,4,5,12,13}, then @ is admissible. Clearly, 3* +4% +122 =132 c ®?> and 3> + 4> =5 ¢
@2, but 42 4 122 ¢ ®?, so ®? is not admissible.

Now, we use admissible subsets to define a class of associative algebras. Let us start with the
following general situation. L

Let @ be a subset of N. Given an N-graded R-algebra A= 2, A;, where Ris a commuta&ve ring
and each A, is an R-module with A;A; C A;y j forall i, j € N, we define an R-module A(P) 1= ;.o A,
and a multiplication in A(®): for ¢; € A; and bje Ajwithi,je€ ®, wedefinea;-bj=a;bjif i+ je€ &,
and zero otherwise. Then one can easily check that A(®) is an associative algebra if ® is an admissible
subset of N.



This procedure can be applied to a triangulated category, in this special situation, the details which
are needed in our proofs read as follows:

Let 7 be a triangulated R-category over a commutative Artin ring R, and let & be a subset in N
containing 0. We denote by E(—, —) the bifunctor

M
Homg (—,—[i]) : T x T — R-Mod,
icd

® M
(X,Y) — Ef(X,Y):=  Homg(X,Y[i]).
ic®
Let X,Y and Z be objects in 7. For each i € ®, let 1; denote the canonical embedding of Hom (X, Y [i])
into EZ(X,Y). For i ¢ ®, we define 1; to be the zero map from Hom (X, Y[i]) to E2(X,Y). An element
in ES(X,Y) is of the form (f;);ce, where f; is a morphism in Homq (X, Y [i]) for i € ®. For simplicity,
we shall just write (f;) for (f;)ice. and each element (f;) in EZ(X,Y) can be rewritten as ZL,-( fi)s
ic®
where 1;(f;) denotes the image of f; under the map 1;.
Let (f;) € EZ(X,Y) and (g;) € E2(Y,Z). We define a multiplication (;) = (f3)(g:):

E2(X,Y) xEX(Y,Z) — EZ(X,Z)
((f): (8i) — (ha),

where

=Y fulgolu))

u,ved
u+v=i

for each i € ®. In particular, for f € Hom(X,Y[i]) and g € Hom¢ (X, Y[j]) with i, j € ®, we have

L(f) 1(g) = v, (f(gld))-

Note that 1, ; =0if i+ j & .
The next proposition explains further why we need to introduce admissible subsets.

Proposition 3.2. Let T be a triangulated R-category with at least one non-zero object, and let @ be a
subset of N containing 0. Then E? (V) together with the multiplication defined above is an associative
R-algebra for every object V € ‘T if and only if @ is an admissible subset of N.

Proof. If ® is an admissible subset of N, then it is straightforward to check that the multipli-
cation on E‘q’l(V) defined above is associative for all objects V € 7. Now we assume that ® is not
an admissible subset, that is, there are integers i, j,k € ¢ satisfying: i+ j+k € ®, i+ j € P, and
j+k¢&d. Let X be a non-zero object in T, and let V := l;;{;rkX [s]. We consider the multiplication
on E2(V). By definition, the object ' *x

L s=i
the composition V —— l;frkX [s] — V'[i], where m is the canonical projection and A is the canonical

inclusion. Similarly, we define g:V — "/ X[s] — V[ and h: V — X [s] — V[K].
Since i+ j € ®, we have (L(f)1;(g))u(h) = vir;(f(g[i]))u(h) = visjri (f(g[i]) (A + j])). One can
check that f(g[i])(h[i + j]) is just the composition V — X[i+ j+ k] — V[i+ j+ k|, where the
maps are canonical maps. Hence the map (1;(f)1;(g))w(h) is non-zero. Since j+k & ®, we have
1;(g)u(h) = 0, and consequently t;(f)(1;(g)w(h)) = 0. This shows that the multiplication of E2 (V)
is not associative, and the proof is completed. [J

Note that EY(X) is an N-graded associative R-algebra with Homq(X,X[i]) as i-th component. If

we define A := EL\(X), then A(®) = E2(X).

[s] is a common direct summand of V and V[i]. Let f be



From now on, we consider exclusively admissible subsets ® of N. Thus, for objects X and Y in 7,
one has an R-algebra EZ(X,X) (which may not be artinian), and a left E> (X, X)-module E2(X,Y).
For simplicity, we write EX (X) for EX (X, X).

In case @ = P(1,0), we see that E> (X) is the endomorphism algebra of the object X in 7. In case
@ = N, we know that EZ (X) is the generalized Yoneda algebra Ext}y (X) = ;»oHomq (X, X[i]) of X.
Particularly, let us take 7 = 2°(A) with A an Artin R-algebra. If A is representation-finite and if X is an

additive generator for A-mod, then Egi(l’o) (X) is the Auslander algebra of A; if we take X = A /rad(A),

then Eq,;(l’m) (X) is the usual Yoneda algebra of A. Thus the algebra E>(X) is a generalization of both
Auslander algebra and Yoneda algebra. For this reason, the algebra EqT) (X) of X in a triangulated
category ‘7 is called the ®-Auslander-Yoneda algebra of X in ‘T in this paper.

If 7 = 2°(A) with A an Artin algebra, we simply write E3(X) for EX(X), and EF(X,Y) for
E2(X,Y). If @ i finite, or if the projective or injective dimension of X is finite, then E®(X) is an Artin
R-algebra.

Note also that the algebra E?(l’m) (X) is a quotient algebra of EJ.(X), and the algebra Ei("’m) (X)

is a subalgebra of Ei(l’"m) (X). Nevertheless, if we take ® = {0,3,9} and X a simple module over the
algebra A := k[X]/(X?) with k a field, then ES (X) is neither a subalgebra nor a quotient algebra of the
generalized Yoneda algebra of X.

Let us remark that one may define the notion of an admissible subset of Z (or of a monoid M with
an identity e), and introduce ®-Auslander-Yoneda algebra of an object in an arbitrary R-category C
with an additive self-equivalence functor (or a family of additive functors {F, },cp from C to itself,
such that F, = id- and FyF,, = Fy, for all g,h € M). For our goals in this paper, we just formulate the
admissible subsets for N.

3.2 Almost v-stable derived equivalences

We briefly recall some basic facts on almost v-stable derived equivalences from [6], which are needed
in proofs.

Let A and B be Artin algebras, and let F : 2°(A) — 2°(B) be a derived equivalence between A
and B. Suppose that Q® and Q° are the tilting complexes associated to F and to a quasi-inverse G of
F, respectively. Now, we assume that Q' =0 for all i > 0, that is, the complex Q° is of the form

O—>Q_n—>~--—>Q_1 —>QO—>O,
In this case, the complex Q® may be chosen of the following form (see [6, Lemma 2.1], for example)
O—>Q0—>Q1 —>--~—>Q"—>O_

Set Q := L?: 1O "and 0 := Lf’: , O'. The functor F is called an almost v-stable derived equivalence
provided add(4 Q) = add(v4Q) and add(3Q) = add(vQ). A crucial property is that an almost v-stable
derived equivalence induces an equivalence between the stable module categories A-mod and B-mod.
Thus A and B share many common properties, for example, A is representation-finite if and only if B
is representation-finite.

In the following lemma, we collect some basic facts on almost v-stable derived equivalences, which
will be used in our proofs.

Lemma 3.3. Let F : 2°(A) — 9°(B) be an almost v-stable derived equivalence between Artin alge-
bras A and B. Suppose that Q® and Q° are the tilting complexes associated to F and to its quasi-inverse
G, respectively. Then:



(1) For each A-module X, the complex F(X) is isomorphic in 2°(B) to a radical complex Q% of
the form
0— 0% — Oy —— 0% —0,

with Q_g( € add(Q) for all i > 0. Moreover, the complex Q% of this form is unique up to isomorphism
in 6" (B).
(2) For each B-module Y, the complex G(Y) is isomorphic in 2°(A) to a radical complex Q} of
the form
O—>Q;n—>---—>Q;l —>Q§),—>(),

with Q; € add(4Q) for all i < 0. Moreover, the complex QY of this form is unique up to isomorphism
in €°(B).

(3) There is a stable equivalence F : A-mod — B-mod with F (X ) = Q% for each A-module X.

(4) There is a stable equivalence G : B-mod — A-mod with G(Y) = QY for each B-module Y.
Moreover, the functor G is a quasi-inverse of F defined in (3).

(5) For an A-module X, we denote by Q¥ the complex 6-0Q%. Then G(Qy) is isomorphic in
PP (A) to a bounded complex Py of projective-injective A-modules with P)’.( =0foralli>1.

Proof. The statement (1) follows from [6, Lemma 3.1]. The statement (2) is a direct consequence of
the definition of an almost v-stable derived equivalence and [6, Lemma 3.2]. Note that the statements
(3) and (4) follow from the proof of [6, Theorem 3.7], and the statement (5) is implied in the proof of
[6, Proposition 3.6]. [J

For an Artin algebra A, let 4E be the direct sum of all non-isomorphic indecomposable projective
A-modules P with the property: vi‘P is projective-injective for all i > 0. The A-module 4E is called a
maximal v-stable A-module.

3.3 Derived equivalences for Auslander-Yoneda algebras

Our main result in this section is the following theorem on derived equivalences between ®-Auslander-
Yoneda algebras.

Theorem 3.4. Let F : 2°(A) — 2°(B) be an almost v-stable derived equivalence between two Artin
algebras A and B, and let F be the stable equivalence defined in Lemma 3.3 (3). For an A-module X,
we set M :=A®X and N := B& F(X). Suppose that ® is an admissible subset in N. Then we have
the following:

(1) The algebras EY (M) and EE (N) are derived-equivalent.

(2) If @ is finite, then there is an almost Vv-stable derived equivalence between ES (M) and ES (N).
Thus ES (M) and ER (N) are also stably equivalent. In particular, there is an almost v-stable derived
equivalence and a stable equivalence between Ends (M) and Endg(N).

Thus, under the assumptions of Theorem 3.4, if @ is finite, then the algebras ET (M) and E§ (N)
share many common invariants: for example, finiteness of finitistic and global dimensions, represen-
tation dimension, Hochschild cohomology, representation-finite type and so on.

The rest of this section is essentially devoted to the proof of Theorem 3.4. First of all, we need
some preparations. Let us start with the following lemma that describes some basic properties of the
algebra Eg’(V), where V is an A-module and is considered as a complex concentrated on degree zero.

Lemma 3.5. Let A be an Artin algebra, and let V be an A-module. Suppose that V| € add(,V) and
V> € A-mod. Then



(1) The ES(V)-module E® (V,V}) is projective and finitely generated, and there is an isomorphism
e E?\)(Vlvvﬁ - HomEf"(V)(E;I\)(Va V1)7E;I\>(Va V2)),

which sends (f;) € EY(V1,V») to the morphism ((a;) — (a;)(f;)) for (a;) € ES(V,V2). Moreover, if
Vs € add(aV) and (gi) € EF (V2,V3), then u((fi) () = u((f:))u((8:)).
(2) The functor EX(V,—) : add(4V) — E3(V)-proj is faithful.
(3) If Vi is projective or V; is injective, then the functor Eg’(V,—) induces an isomorphism of
R-modules:
E} (V,—) : Homy (V,V2) — Homgs ) (EF (V, V1), EZ (V,V2)).
(4) If @ is finite, and P € add(4V) is projective, then

Vo) Ef (V, P) = EF (V, V4P).

Proof. (1) Since ES (V, —) is an additive functor and since V; € add(4V), we know that EY (V,V}) is
in add(E$(V)), and consequently ES (V,V}) is a finitely generated projective EF (V)-module. Similarly,
the Ef{’(V)-module Ef{’(V, V,) is also projective. To show that y is an isomorphism, we can assume that
V) is indecomposable by additivity. Let w; : V — V; be the canonical projection, and letA; : V; — V
be the canonical injection. We define a map

: Homgy ) (S (V, Vi), ES (V,V2)) — EZ (W, V2)

by sending o € Homgay) (EZ(V,V1),ES(V,V1)) to 1o(A1)a(1o(m)). By calculation, the morphism
(’Y,u) (0() : E}?(V, V1> — E;I\)(V, Vz) sends each x € E?\)(V, V]) to Xl()()\q )O((l()(TC] )) = O((xlo(ll )10(7’51 )) =
ou(x). This shows that yu = id. Similarly, one can check that uy = id. Hence y is an isomorphism. The
rest of (1) can be verified easily.

(2) Using definition, one can check that the map

EX (V,—) : Homgpn (s (V1, V2) — Homge ) (EF (V,V1), EZ (V,V2))

is the composition of the embedding 1y : Homu (V,V2) — Ef(Vl ,V2) with the isomorphism w in (1).
Hence E(V, —) is a faithful functor.
(3) If V is projective or V; is injective, then the embedding

1o - Hom@b(A)(Vl,Vz) — Ef(Vl,Vz)

is an isomorphism. Since Eg’(V, —) is the composition of 1y with the isomorphism u in (1), the state-
ment (3) follows.
(4) This follows directly from the following isomorphisms

VE}’(V)E,CLI&)(VaP) = DHomEZ’(V)(E,?(vvp)aE,?(v7v))
DEZ(P,V) by (1)

DHomy (P,V)

HomA(V,VAP)

= ES(V,vaP).

IR
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Thus we have finished the proof. [

From now on, we assume that F : 2°(A) — %°(B) is an almost v-stable derived equivalence with
a quasi-inverse functor G, that Q°® and Q° are tilting complexes associated to F and G, respectively,
and that F : A-mod — B-mod is the stable equivalence defined by Lemma 3.3 (3). For an A-module
X, we may assume that F(X) = Q% as in Lemma 3.3 (1), and define ;\M = A& X and gN = B& F(X).
By T* we denote the complex Q° & Q%. Clearly, T* is in .#(add(gN)).



Lemma 3.6. Keeping the notations above, we have the following:

(1) Hom%b(add(BN))(T°, T.[l]) = OfOI‘ all'i 7é 0.

(2) add(T*) generates #°(add(gN)) as a triangulated category.

Proof. Since F(A) ~ Q°, the complex T* is isomorphic to F(M) = Q},. So, we consider O},
instead.

(1) Suppose i < 0. Then Hom ;v (g) (03, O3 [i]) ~ Homgs (O3, O3y[i]) by Lemma 2.1. Since
F(M) = Q},, we have Hom g (03, O [i]) =~ Hom@b(A)(M,M[z]) 0. Hence Hom (5 (03, O [i])
=0foralli <O.

Let O} be the complex 600}, There is a distinguished triangle

(#) O 2 03 2 F (M) 2 0]
in 7 ®(B). Applying Hom A0(B (QM, ) to (%), we get an exact sequence

Hom ;o) (Qiy, F (M) [i —1]) — Hom o) (i, Oy [i]) — Hom v ) (Qiy, Oy [i]) — Hom o) (O, F (M) i])

for each integer i. Since O}, = 0 for all i < 0, we have Hom (g (03, F(M)][i]) = 0 for all i > 0.
By Lemma 3.3 (5), G(0;,) is isomorphic to a bounded complex Py, of projective-injective A-modules
such that Pi, = 0 for all i > 1. Thus, we have

Hom ;v g (QMaQM[ i)

1 1R

for all i > 1, and consequently Hom ;g (QM,QM[ ]) =0 for all i > 1. To prove (1), it remains to
show that Hom 5 (Q3;, O3[1]) = 0. Usmg the above exact sequence, we only need to show that the
induced map

Hom ;g (QM,OCM) Hom 5 (QM7 (M )) — Hom v (5 (QM»QM[ ),

is surjective. Note that G(Q};) is isomorphic in #°(A) to a complex Pj; of projective-injective modules
such that P, = 0 for all k > 1. Thus, we can form a commutative diagram

Py e M e con(ow) 2 B[]

N R S
Ll S, Gy

G(05) —2 GF(M) -2, GF(M) S,
in Z°(A), where the vertical maps are all isomorphisms, A and p are the canonical morphisms, and
where the morphism ¢ is chosen in .#°(A) such that the first square is commutative. The distin-
guished triangle in the top row of the above diagram can be viewed as a distinguished triangle in
H#°(A). Applying Hom 4y (M, —) to this triangle, we can easily see that Hom v (4)(M, p) is a sur-
jective map since Hom 4 (M, M[1]) = 0. By Lemma 2.1, the localization functor © : #° (A) —
9 (A) induces two isomorphisms

Hom v 4y (M, con(¢nr)) ~ Hom () (M, con(pr)) and Hom o4 (M, Py[1]) ~ Homgn ) (M, Py[1]).
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It follows that Homgs 4) (M, p) is surjective. Since the vertical maps of the above diagram are all
isomorphisms, the map Hom s 4) (M, Gouy ) is surjective, or equivalently Hom g 4) (G (0%), Gowy) is
surjective. Since G is an equivalence, it follows that Homgs g (QM, o) is surjectlve By Lemma 2.1

again, the localization functor 0 : #®(B) — Z°(B) gives rise to isomorphisms

Hom%b (QM7 ( )) Hom,@b (QM7 ( ))andHom)X/b (QM:QM[ ]) Hom,@b (QMJQM[ ])

Hence the map Hom v ) (Q};, 0) is surjective, and consequently Hom v (5 (Q3y, O3 [1]) =
Altogether, we have shown that Hom v (g (QM, Q%1i]) = 0 for all i # 0. Since #°(B ) is a full
subcategory of .#®(add(zN)), we have Homfb 2dd(zN)) (O3 Oy [i]) = O for all i # 0. This proves (1).
(2) Since Q° is a tilting complex over B, add(Q*) generates .#°(add(pB)) as a triangulated cate-
gory. By Lemma 3.3, 0% = F(X) and all the terms of Q% other than QY are in add(zB). Hence F (X) is
in the triangulated subcategory generated by add(Q® & Q% ), and consequently add(Q® & Q%) generates
#°(add(B@ F(X))) as a triangulated category. Thus, the statement (2) follows. [J

The additive functor E§ (N, —) : add(gN) — E{ (N)-proj induces a triangle functor
Ep*(N,—): 2" (add(sN)) — #°(Ej (N)-proj).
For each integer i, the i-th term of ES*(N,T*) is EF (N, T"), and the differential map from E% (N, T")
to BR (N, T is ER(N,d), where d : T — T'*! is the differential map of T°.
Lemma 3.7. The complex EX*(N,T*) is a tilting complex over EE (N).

Proof. Let i # 0, and let f* be a morphism in Hom ey, E®*(N,T*),ER*(N,T*)[i]).

-proj)(
Then we have a commutative diagram

EP(Nd
e
_. E¥Nd EL(N.d EP(N.d
ES(V, 7)) "L B (v, T LB (v, P T

Note that the term E (N, T?) is zero if i < 0. Since all the terms of 7* other than T° are projective-
injective, and since i # 0, we see from Lemma 3.5 (3) that f* = EX(N, g) for some gk : T — Tk*
for all integers k. It follows from the above commutative diagram that, for each integer k, we have

EZ (N,d)Eg(N,¢""") —EF(N,g")EZ (N,d) =0,

or equivalently EF (N,dg"™! — gkd) = 0. Since E§ (N, —) : add(gN) — E (N)-proj is a faithful func-
tor by Lemma 3.5 (2), we have dgc*! — gkd = 0 for all integers k, and consequently g* := (g) is in
Hom b (aqa(pny) (T*, T°[i]) and f* = EZ*(N,¢%). By Lemma 3.6 (1), the map g* is null-homotopic,
and consequently f* = E$*(N, g*) is null-homotopic. Thus, we have proved that

Hom ;1 e v )-proj) (Es " (N, T*), Eg* (N, T°)[i]) = 0
for all non-zero integers i.

By definition, the triangle functor ES*(N,—) : #°(add(sN)) — #°(EE(N)-proj) sends N to
EP(N). The full triangulated subcategory of .#®(add(zN)) generated by add(T*®) contains N by
Lemma 3.6 (2), and so E3(N) is in the full triangulated subcategory of #°(Ej (N)-proj) generated
by add(EE*(N,T*)). Hence add(E3*(N,T*)) generates .# °(E (N)-proj) as a triangulated category.
This finishes the proof. [J

In the following, we shall prove that the endomorphism algebra of the complex E*(N,T*) is
isomorphic to Eg’ (M). For this purpose, we first prove the following lemma.
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Lemma 3.8. Keeping the notations above, for each A-module V, we have:
(1) For each positive integer k, there is an isomorphism

6 : Homgn s (V, V[k]) — Homgn g) (F(V), F(V)[K]).

Here we denote the image of g under 0y by 6;(g).
(2) For each pair of positive integers k and 1, the 6y and 0, in (1) satisfy

0 (8) (61 (h)[k]) = Oy (g(h[K]))
for all g € Homyp4)(V, V[k]) and h € Hom g4 (V, V[]).
Proof. By Lemma 3.3, we may assume that F (V) is the complex Qf, defined in Lemma 3.3 (1), and

therefore F(V) = QOV As before, the complex G>0Q_{, is denoted by Q‘J} . Thus, we have a distinguished
triangle in 2°(B):

— I T _ o —
Of —>F(V) —=F(V)—> 0y 1].
(1) For a morphism f : V — V[k], we can form the following commutative diagram in 2°(B)

Ty oy

0y —>F(V) F(V) —%— 0 [1]

l‘lf lF(.f) ibf iaf[ll
iv[k] Ty [k]

v 1k % Py 25 F vy -2 G k1),

The map by exists because the composition iy F(f) (1 [k]) belongs to Homgn g (Qy,F(V)[K]) = 0.
If there is another map b’ : F(V) — F(V)[k] such that y b, = F(f)(nv[k]), then v (b — b)) = 0,
and by — b'; factorizes through Qy. But Homg ) (Qy [1], F (V) [k]) = Hom (5 (Oy [1], F (V) [k]) = 0.
Hence by = b}, that is, the map by is uniquely determined by the above commutative diagram. Thus,
we can define a morphism

Ok . Hom@b(A) (V,V[k]) — Hom@b(B)(F(V),F(V)[k])

by sending f to by. We claim that this 6y is an isomorphism.

In fact, it is surjective: For each map b : F(V) — F(V)[k], the composition 7y b(ay [k]) belongs
to Hom g ) (F(V), Qy [k + 1]) = Hom g 4 (GF (V),G(Qy ) [k + 1]). By Lemma 3.3 (5), the complex
G(Qy) is isomorphic in Z°(A) to a bounded complex P of projective-injective A-modules such that
Py, =0 for all i > 1. Hence Homgn (4 (GF (V),G(Qy) [k +1]) ~ Homgn 4 (V, Py [k+1]) = 0, and the
map Ty b(ow [k]) is zero. It follows that there is a morphism u : F(V) — F(V)[k] such that u(ny [k]) =
nyb. Since F is an equivalence, we have u = F(f) for some f: V — V[k|, and consequently b =
0k(f). This shows that 8y is a surjective map.

Now we show that 6y is injective: Assume that 8(f) = b =0. Then the composition F(f)(ny[k]) =
0, and consequently F (f) factorizes through Oy} [k]. It follows that GF ( f) factorizes through G(Q} ) [k] ~
Py [k], or equivalently, the map f : V — V[k] factorizes through the bounded complex P} of projective-
injective A-modules, say f = gh for some g : V — Py and h: P — V[k]. Since k > 0, and since
both g and & can be chosen to be chain maps, we see immediately that f = gh = 0. This shows that the
map O is injective, and therefore 0y is an isomorphism.

(2) By the above discussion, we have

Ty Or(g)(8:(g)[k]) =



By the definition of 6;.;, we have 0;1;(g(hlk])) = 6x(2)(6:(g)[k]). O

Remark: Let f be in Homgn4)(V,V), and let g be in Homgs4)(V,V[k]) for some k > 0. If ¢ :
F(V) — F(V) is a morphism such that ty ¢y = F (f)my, then, by a proof similar to Lemma 3.8(3), we
have

tr0c(g) = O(fg)  and  Ok(g)(r/[K]) = Bu(g(f[K])).

For instance, by Lemma 2.1, we can assume that the map F(f) : O} — O, is induced by a chain
map p°, that is, F(f) = p* in #°(B). Since the map Ty is the canonical map from O} to 0%, we
see that the map p° : F(V) — F(V) satisfies the condition 1ty p° = F(f)my. Therefore, by the above
discussion, we have

P6i(g) = B1(fg) and 6, (g) (p°[K]) = Ok (g(f[K])).

Proposition 3.9. End oy, (ES*(N,T*)) is isomorphic to ES (M).

-proj)
Proof. Let (f;) be in EF(M). By our assumption, we have T* = F(M). By Lemma 2.1, the
morphism F(fy) : T* — T* is equal in 2°(B) to a chain map. For simplicity, we shall assume that
F(fp) is a chain map. Recall that F (M) = T° by the definition of F (see Lemma 3.3 (3)).
Now we set ®T := ®\{0}. For each k € &', by Lemma 3.8, we have a map 6;(f;) : F(M) —
F(M)[k]. This gives rise to a morphism

u (lk(ek(fk))) : E?(N, TO) — E;I;(N, TO),

where s the isomorphism defined in Lemma 3.5 (1) and 14 is the embedding from Hom s (T°, TO[k])
to E (T, T?). We claim that the composition of u(1(6x(f¢))) with the differential Ef (N, d) : Ef (N, T°)
— BER(N,T") is zero.
Indeed, by the proof of Lemma 3.5 (2), we have ES (N, d) = u(10(d)). Thus,
(W (Oc(fi))EF(N,d) = (w(8k(fi))u(to(d))  (by the proof of Lemma 3.5 (2) )
= 1t (W (B (fi)) o (d)) ( by Lemma 3.5(1) )
1 (w(Ok(fi)dk])) =0 (since 8x(fi)d[k] : T — T'[k] must be zero ).

Thus, the map u(w (6x(f¢))) gives rise to an endomorphism of EJ* (N, T*):

_ . EX(Nd _
0—=EP(N,T9) LQE%’(N,T‘) —— - ——=EY(N,T") ——0
M(lk(ek(ﬂ))) io J{O

_ E®WN.d _
0——ES(N, 7)) 2 e Tl o ER(N, T 0

We denote this endomorphism by 6y (fi). Now, we define a map

n:EY(M) — End v (gs (v ES*(N,T*))

-proj)(

by sending (f;) to
EZ*(N,F(fo)+ Y. 6c(fo)-

kedt

We claim that 1] is an algebra homomorphism. This will be shown with help of the next lemma.

13



Lemma 3.10. Let (f;) and (g;) be in EY (M), and let k,I be in ®. Then the following hold:

(1) 8081 (g1) = { gf+z<fk<gz ). ke

(2) BE*(N,F(f0))0x(gk) = Oc(fogk)-
(3) Bc(fi) ER* (N, F(g0)) = 6k(fi(g0[K])).

Proof. (1). By Lemma 3.8 (2), we have

U (8k (i) u (8:(f1)) = Wt (Bry1 (fi (&1 [K])))-

If k+1 € @, then it follows that 6 (/)8 (fi) = 8x+1(fi(g:(K])) by applying u. If k+1 & P, then 1.4, =0,
and consequently v (6x(fi))u/(6:(f1)) = 0. Therefore 6 (fi)0;(f;) =0 for k+1 & P.

(2) and (3). By definition, the map EE*(N,F(f0))? : ER (N, T°) — ES(N,T°) isER (N, F (f)°) =
u(o(F(f0)°)), where F(fo)?: TY — TO is induced by the chain map F(fp) from T° to T°. By the
remark just before Lemma 3.9, we have

W0(F (f0)°)u (Ok(gx)) = 1 (Bk(fogx)) and 1 (B (fic))10(F(20)°) =t (Ok(fi(golK])))-

Applying u to these equalities, one can easily see that

E5*(N,F(fo))0c(gx) = 0k fogk) and B (fi)EZ* (N, F (80)) = O (fi(g0[k]))-

These are precisely the (2) and (3). [

Now, we continue the proof of Lemma 3.9: With Lemma 3.10 in hand, it is straightforward to
check that 1 is an algebra homomorphism. In the following we first show that 1) is injective.

Pick an (f;) in ES (M), let p* :==n((f;)). Then we have

PP=E(N.F(fo))+ Y u(u(®c(f)))
ked+
and p' = EY(N,F(fy))) for all i > 0. If p* = 0, then there is map /' : E} (N,T) — ES(N, T ")
for i > 0 such that p® = EX(N,d)h! and p' = ES(N,d)h"™! + WES(N,d) for all i > 0. Since T is
projective-injective for all i > 0, it follows from Lemma 3.5 (3) that, for each i > 0, we have h' =
E®(N,u') for some u' : T — T'~!. Hence

EF(N.F(f0)°)+ Y u(w(6(fi))) =EZ(N,d)EZ(N,u') =EZ(N,du").
ked+
This yields that
u(to(F (f0)° —du')) =EZ (N, F(fo)° —du') = Y u(u(6x(f2)))-

ked+
_ M o
Since y is an isomorphism, and since Ef (N, T°) = Homp ) (N, T"[k]) is a direct sum, we get

ked
F(fo)? = du' and 8;(f;) = 0 for all k € ®*. Since 6 is an isomorphism by Lemma 3.8, we have

fx =0 for all k € . Now for each i > 0, we have
EF(N,F(fo)') = p' = E§ (N, d)E5(N,u"™") + E§ (N, u')EF (N, d).

Hence E (N, F(fy)' — du'*! —u'd) = 0. By Lemma 3.5 (2), the functor Ef (N, —) is faithful. There-
fore, we get F(fy)! = du'*' + uid for i > 0. Note that we have shown that F(f)° = du'. Hence
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the morphism F(fp) is null-homotopic, that is, F(fy) = 0, and therefore fo = 0. Altogether, we get
(fi) = 0. This shows that 1 is injective.

Finally, we show that 1 is surjective. For p® in End %b(EE(N)_proj)(Eg" (N,T*)), we can assume
that p' = E$ (N, t;) with t; : T' — T' for i > 0 since T" is projective-injective for i > 0. By Lemma 3.5
(1), we may assume further that p® = pt (¥ycq W (st)) with s : T® — TO[k] for k € ®. By the proof of
Lemma 3.5 (3), we have u (19(so)) = E§ (N, s0). Thus, p° = EJ(N,s0) + Liea 4 ((sx)). It follows
from E(N,d)p' = p"E$(N,d) that

Eg’(N,dtl) ZEE(N,Sod)-F Z ,u(lk(sk)),u(lo(a’))
ked+

=Eg(N.sod) + Y. u(w(se(d[k])))
kedt
=EP(N,sod) (because si(d[k]) : T® — T'[k] must be zero for k > 0).

Hence dt; = sod since EY (N, —) is a faithful on add(N). For each i > 0, by the fact EY (N, d)p'*! =
P'ER(N,d), we getdt;, | = t;d. This gives rise to a morphism o® in End ) (T*) by defining ol :=so
and o :=1¢; for all i > 0. By Lemma 2.1 and the fact that F is an equivalence, we conclude that a® =
F(fo) for some fy € Homgn4) (M, M). The map p* —EZ* (N, ) is a chain map B* from EZ*(N, T*)
to itself with B = ¥y cq+ p ((se)) and B* =0 for all k > 0. By Lemma 3.8, we can write sy =

Ok(fi) with fi : M — M[k] for all k € ®F. Thus B = Yo+t (U(sx)) = Liew 4 (w(Bk(fk))), and
p* —E2*(N,0*) = Yica+ O1(fi). Consequently, we get

p*=Eg*(N,a%)+ Y Ol(fi) =E5*(N.F(fo))+ Y. 8c(fe) =n((fi))

kedt kedt
for (f;) € EY(M). Hence 7 is surjective. This finishes the proof of Lemma 3.9. [J

Lemma 3.11. Let F : 2°(A) — 2°(T) be a derived equivalence between Artin R-algebras A and T,
and let P* be a tilting complex associated to F. Suppose that the following two conditions are satisfied.

(1) All the terms of P® in negative degrees are zero, and all the terms of P*® in positive degrees are
in add(AW) for some projective A-module \W with add(vaW) = add(AW).

(2) For the module \W in (1), the complex F(z\W) is isomorphic to a complex in #®(add(rV))
for some projective I'-module rV with add(vrV) = add(rV).

Then the quasi-inverse of F is an almost V-stable derived equivalence.

Proof. Let G be a quasi-inverse of F. By the definition of almost v-stable equivalences, we need
to consider the tilting complex associated to G. This is equivalent to consiil_ering F(A).

Since P* is a tilting complex over A, it is well-known that oA is inadd( ;.5 P') which is contained
in add(P° © W) by the assumption (1). Hence F(sA) is in add(F (P° ©W)). Let P* be the complex
0-0P°. There is a distinguished triangle

pt P* PO P[]
in 2°(A). Applying F, we get a distinguished triangle

F(PT) F(P?) F(P?) —= F(P*)[1]

in 2°("). By definition, there is an isomorphism F(P®*) ~ T in 2°(I"). By the assumption (1),
we have P € #°(add(,W)), and consequently F(P*) is isomorphic in 2°(T") to a complex R® in
2 ®(add(rV)) by Assumption (2). Thus, the complex F(P°) is isomorphic in 2°(T") to the mapping
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cone of a chain map from R® to rI". This implies that F(P°) is isomorphic in 2°(T") to a complex
S* in 7 °(I'-proj) such that S’ € add(rV) for all i # 0. By the assumption (2) again, the complex
F(AW) is isomorphic in 2°(T") to a complex in .#®(add(rV)). Hence F(P°) @ F(,W) is isomor-
phic in 2°(T") to a complex U*® in .#®(I-proj) such that U’ € add(rV) for all i # 0. Note that
F(A) € add(F(P%) @ F(A\W)). Therefore, the complex F(A) is isomorphic in 2°(I") to a complex
P* in #®(T-proj) such that P’ € add(rV) for all i # 0. Since P! = 0 for all i < 0, we see from [6,
Lemma 2.1] that P* has zero homology in all positive degrees. Hence we can assume that P' = 0 for
alli > 0.

Thus, the complex P* ~ F(A) is a tilting complex associated to G and satisfies that P/ = 0 for
all i >0 and P' € add(rV) for all i < 0. The complex P*® is a tilting complex associated to F and
satisfies that P' = 0 for all i < 0 and P’ € add(,W) for all i > 0. Since add(VvAW) = add(,W), and
since add(vrV) = add(rV), it follows from [6, Proposition 3.8 (3)] that the functor G is an almost
v-stable derived equivalence. [J

Now we prove our main result, Theorem 3.4, in this section.

Proof of Theorem 3.4. The statement (1) follows from Lemma 3.7, Proposition 3.9 and Lemma
2.2. It remains to prove statement (2). Now we suppose that @ is finite. Then EF(M) and Ef(N) are
Artin R-algebras.

Let 4E be a maximal v-stable A-module, and let gE be a maximal v-stable B-module. Then 4E
can be viewed as a direct summand of 4M. Let Q% be F(,E) defined in Lemma 3.3 (1). Then Q% is
a direct summand of Q;,, =03 Q;( Note that Q_;l is just the complex T* considered in Proposition
3.9. Now we consider the isomorphism 1 in the proof of Proposition 3.9. Let e be the idempotent
in End4 (M) corresponding to the direct summand 4E. Then 1y(e) is the idempotent in EY (M) corre-
sponding to the direct summand ES (M, E) of Ef (M). By definition, 1 (1o(e)) is E§*(N,F(e)), which
is the idempotent in Endge ) proj (T*) corresponding to ES*(N,Q%). Hence the derived equivalence
F: PY(ER(M)) — 2°(EE(N)) induces by the isomorphism 1 in the proof of Proposition 3.9 sends
ES(M,E) to EF*(N,0%). By [6, Lemma 3.9], the functor F induces an equivalence between the
triangulated categories #°(add(4E)) and .#°(add(3E)). Hence Q% = F(4E) is in #®(add(3E)),
the complex ES*(N, 0%,) belongs to .#°(add(Ef (N, E)) and consequently £ induces a full, faithful
triangle functor

£ o (add(E(M,E))) — #°(add(ER (N, E))).

Since add(4E) clearly generates .#®(add(4E)) as a triangulated category, we see immediately that
add(Q%.) generates #°(add(gE)) as a triangulated category. This implies that add(ES* (N, 0%.)) gen-
erates % °(add(EY (N, E))) as a triangulated category. This shows that

F: 2 (add(E®(M,E))) — " (add(EZ (N, E)))

is dense, and therefore an equivalence. Let G be a quasi-inverse of the derived equivalence F'. Then
the functor G also induces an equivalence between the triangulated categories .#°(add(ES (N, E)))
and 7 (add(E® (M, E))). This implies that the complex G(EE (N, E)) is isomorphic to a complex in
2 °(add(ES (M,E))).

Now we use Lemma 3.11 to complete the proof. In fact, the complex EF*(N,T*) is a tilting
complex associated to the derived equivalence G : 2°(ER(N)) — Z*(ES(M)). By definition, the
B-module Q is in add(3E). Thus, the term EJ (N, T%) of EY*(N,T*) in degree i is in add(E$ (N, E))
for all i > 0, and it follows from Lemma 3.5 (4) that

add(Veg (v E (N, E)) = add(gg v EF (N, V5E)) = add(gg (v E5 (N, E)).
Similarly, we have add(vgs M)Ef\’ (M,E)) = add(gs M)Eg’ (M,E)). Hence, by Lemma 3.11, the functor

F' is an almost v-stable derived equivalence.
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The statements on stable equivalence in Theorem 3.4 follow from [6, Theorem 1.1]. This finishes
the proof. [

Note that the proof of Theorem 3.4 (2) shows also that if both E} (M) and EJ(N) are Artin R-
algebras, then the conclusion of Theorem 3.4 (2) is valid.

Let us remark that, in case of finite-dimensional algebras over a field, the special case for ® =
®(1,0) in Theorem 3.4 about stable equivalence was proved in [6, Proposition 6.1] by using two-sided
tilting complexes, and the conclusion there guarantees a stable equivalence of Morita type. But the
proof there in [6] does not work here any more, since we do not have two-sided tilting complexes in
general for Artin algebras.

As a consequence of Theorem 3.4, we have the following corollary.

Corollary 3.12. Let F : Z°(A) — 9°(B) be a derived equivalence between self-injective Artin al-
gebras A and B, and let ¢ be the stable equivalence induced by F. Then, for each A-module X and
each admissible subset ® of N, the ®-Auslander-Yoneda algebras EY (A ® X) and E} (B® 0(X)) are
derived-equivalent. Particularly, the generalized Yoneda algebras Exty (A @& X) and Extz(B® ¢(X))
are derived-equivalent. Moreover; if ® is finite, then EY (A ®X) and B3 (B® ¢(X)) are stably equiva-
lent.

Proof. There is an integer i such that F[i] is an almost v-stable derived equivalence. Let ¢; be the
stable equivalence induced by F[i]. Then ¢(X) ~ ¢;Q/(X) in B-mod for every A-module X, where Q'
is the i-th syzygy operator of A. By the definition of an almost v-stable derived equivalence, either [i] or
[—i] is almost v-stable. Hence E®(A @ X) and EF (A & Q/(X)) are derived-equivalent by Theorem 3.4.
Thus, by Theorem 3.4 again, the algebras ES (A ® Q/(X)) and Ef (B® ¢,Q/ (X)) are derived-equivalent.
The stable equivalence follows from [6, Theorem 1.1]. Thus the proof is completed. [

As a direct consequence of Corollary 3.12, we have the following corollary concerning Auslander
algebras.

Corollary 3.13. Suppose that A and B are self-injective Artin algebras of finite representation type. If
A and B are derived-equivalent, then the Auslander algebras of A and B are both derived and stably
equivalent.

Let us remark that the notion of a stable equivalence of Morita type for finite-dimensional algebras
can be formulated for Artin R-algebras. But, in this case, we do not know if a stable equivalence of
Morita type between Artin algebras induces a stable equivalence since we do not know whether a pro-
jective A-A-bimodule is projective as a one-sided module when the ground ring is a commutative Artin
ring. So, Theorem 3.4 (2), Corollary 3.12 (1) and Corollary 3.13 ensure a stable equivalence between
the endomorphism algebras of generators over Artin algebras, while the main result in [6, Section 6]
ensures a stable equivalence of Morita type between the endomorphism algebras of generators over
finite-dimensional algebras.

Note that if A and B are not self-injective, then Corollary 3.13 may fail. For a counterexample,
we just check the following two algebras A and B, where A is given by the path algebra of the quiver

o — o —o,and B is given by o LI with the relation aff = 0. Clearly, B is the endomorphism
algebra of a tilting A-module. Note that the Auslander algebras of A and B have different numbers of
non-isomorphic simple modules, and therefore are never derived-equivalent since derived equivalences
preserve the number of non-isomorphic simple modules [7]. Notice that, though A and B are derived-
equivalent, there is no almost v-stable derived equivalence between A and B since A and B are not
stably equivalent. This example shows also that Theorem 3.4 may fail if we drop the almost v-stable
condition.
The following question relevant to Corollary 3.13 might be of interest.
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Question. Let A and B be self-injective Artin algebras of finite representation type with 4X and gY
additive generators for A-mod and B-mod, respectively. Suppose that there is a natural number i such
that the algebras E;I‘)(U) (X) and E;I;(I’L) (Y) are derived-equivalent. Are A and B derived-equivalent ?

We remark that Asashiba in [1] gave a complete classification of representation-finite self-injective
algebras up to derived equivalence.

For a self-injective Artin R-algebra A, we know that the shift functor [—1]: 2°(A) — 2°(A) is an
almost v-stable derived equivalence, and this functor induces a stable functor F : A-mod— A-mod,
which is isomorphic to Q4(—), the Heller loop operator. Thus we have the following corollary to
Theorem 3.4, which extends [5, Corollary 3.7] in some sense.

Corollary 3.14. Let A be a self-injective Artin algebra. Then, for any admissible subset ® of N
and for any A-module X, we have a derived equivalence between EX (A © X) and ES (A © Q4 (X)).
Moreover, if @ is finite, then there is an almost v-stable derived equivalence between Eff (A®X) and
ES(A® Qa(X)). Thus they are stably equivalent.

Let us mention the following consequence of Corollary 3.14.

Corollary 3.15. Let A be a self-injective Artin algebra, and let J be the Jacobson radical of A with the
nilpotency index n. Then:
(1) Forany 1 < j <n—1 and for any admissible subset ® of N, the ®-Auslander-Yoneda algebras

M M .
ES(A® A/J)andBS(A®  J') are derived-equivalent.
i=1 i=1

(2) The global dimension of Ends(aA®J B J* D --- @ J" ") is at most n.

MM :
(3) The global dimension of Enda(4A@  A/soc'(4A)) is at most n.
i=1
(4) The global dimension of Enda (4A @ soc(4A) @ --- D soc" 1 (4A)) is at most n.

Proof. Since the syzygy of L{:] A/ is L{:l J! up to a projective summand, we have (1) imme-
diately from Corollary 3.14. The statement (2) follows from [6, Corollary 4.3] together vii_th a result
of Auslander, which says that, for any Artin algebra A, the global dimension of End4 (A & l’-‘;ll AT
is at most n.

Since 4A is injective, we know that add(4A) = add(D(A,)). It follows from D(A, /J}) ~ soc'(D(A4))
that

M . ™M . \oP ™M
Endaor(Ag & A/JL) ~ (EndA (DAr® A /J;,))) ~ (EndA (D(Ax) ®

soci(D(AA)))>0p.
i=1 i=1 i=1

The latter is Morita equivalent to (Endy (4A & L?; !'soc(44)))””. This shows (4). The statement (3)
follows from (4), Corollary 3.14 and [6, Corollary 4.3]. J

Finally, we state a dual version of Theorem 3.4, which will produce a derived equivalence between
the endomorphism algebras of cogenerators. First, we point out the following facts.

Lemma 3.16. Let F : 9°(A) — P°(B) be an almost v-stable derived equivalence with a quasi-
inverse functor G. Suppose D is the usual duality. Then we have the following.

(1) The functor DGD : 2°(B?) — 2°(AP) is an almost v-stable derived equivalence with a
quasi-inverse functor DF D.

(2) Let F : A-mod — B-mod and DFD : A°°-mod — B°-mod be the stable equivalence defined
in Lemma 3.3 (3) and (4), respectively. Then, for each A-module X, there is an isomorphism DF (X ) ~
DFD(D(X)) in B°°-mod.
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Proof. (1) Suppose that Q® and Q° are tilting complexes associated to F and G, respectively. We
assume that Q® and Q° are radical complexes. There is an isomorphism

DGD(HOIn;;(Q.,BB)) ~ DG(VBQ_.) ~ DVBG(Q.) ~ Dvy (AA) ~ Homy (AA,AA) ~ Ap

Similarly, we have DFD(Homj(Q°,4A)) ~ Bg. Consequently, the complexes P* := Homp(Q®, gB)
and P'L:: Hom} (Q°®,4A) are tilting coniglexes associated to DGD and DF D, respectively. Since
30 =, 0 we have Homg(Q,pB) = ", P~'. Moreover,

v (Homg(Q,3B)) =~ D(3Q) ~ Homp(v5 (0), sB) € add(Homg(Q, 3B))

since vz Q is in aﬂd(BQ). Hence add(vge (Homg(Q, 3B))) = add(Homg(Q, 3B)). Similarly, we have
Homy(Q,4A) = 7, P' and add (Ve (Homy (Q,4A))) = add(Homy4 (Q, 44)), and consequently DGD
is an almost v-stable derived equivalence. Clearly, the functors DGD and DF D are mutually quasi-
inverse functors. This proves (1).

(2) For each A-module X, we have DFD(D(X)) = DF(X). By Lemma 3.3 (2), the complex
DFD(D(X)) is isomorphic to a complex Ppxy of the form

— 0
0 — Ppiy) =~ Ppy —0

with Pli)(x) € add(Homg(Q, gB)) for all i < 0 and DFD(D(X)) = Pg(x)' Consequently, the complex
F(X) is isomorphic to D(P[‘)(X)) of the form

00— D(Pg(x)) —_— e — D(PL;&)) —0
with D(Pg(x)) being in degree zero and D(Pg(x)) € add(vQ) = add(3Q) for all i > 0. By Lemma 3.3
(1) and (3), we have F(X) ~ D(PB(X)) = DDFD(D(X)) in B-mod. This finishes the proof. (J

Clearly, for an Artin algebra A and an A-module V, the algebra Ef(V) is isomorphic to the opposite
algebra of Exo, (D(V)) for every admissible subset ® of N.

Corollary 3.17. Let F : 2°(A) — 9°(B) be an almost Vv-stable derived equivalence between two
Artin algebras A and B, and let F be the stable equivalence defined in Lemma 3.3. For each A-module
X, set M = D(Ap) ®X and N = D(Bg) ® F (X). Suppose that ® is an admissible subset of N. Then
(1) The ®-Auslander-Yoneda algebras ES (M) and ES (N) are derived-equivalent.
(2) If @ is finite, then there is an almost v-stale derived equivalence between ES (M) and EJ (N).

Proof. We consider the A°°-module DM = A4 & D(X) and the B°°-module DN = Bp & DF (X).
By Lemma 3.16, we see that DF (X) ~ DFD(D(X)). Let G be a quasi-inverse of F. Then the functor
DGD is an almost v-stable derived equivalence by Lemma 3.16 (1), and DFD is a quasi-inverse of
DGD. Thus, by Theorem 3.4 and by Lemma 3.16 (1), the corollary follows. [J

4 Derived equivalences for quotient algebras

In the previous section, we have seen that there are many derived equivalences between quotient al-
gebras of ®-Auslander-Yoneda algebras that are derived-equivalent (see Theorem 3.4 and Subsection
3.1). This phenomenon gives rise to a general question: How to construct a new derived equivalence
for quotient algebras from the given one between two given algebras ? In this section, we shall con-
sider this question and provide methods to transfer a derived equivalence between two given algebras
to a derived equivalence between their quotient algebras. In particular, we shall prove Theorem 1.3
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4.1 Derived equivalences for algebras modulo ideals

Let us start with the following general setting.

Suppose that A is an Artin R-algebra over a commutative Artin ring R, and suppose that / is an
ideal in A. We denote by A the quotient algebra A/I of A by the ideal I. The category A-mod can
be regarded as a full subcategory of A-mod. Also, there is a canonical functor from A-mod to A-mod
which sends each X € A-mod to X := X /IX. This functor induces a functor ~ : €(A) — %'(A), which
is defined as follows: for a complex X* = (X%);cz of A-modules, let IX* be the sub-complex of X* in
which the i-th term is the submodule IX’ of X’; we define X" to be the quotient complex of X* modulo
IX*. The action of ~ on a chain map can be defined canonically. Thus ~ is a well-defined functor. For
each complex X* of A-modules, we have the following canonical exact sequence of complexes:

0—IX* - x* X" —0.

For a complex Y* of A-modules, this sequence induces another exact sequence of R-modules:
0 — Homy (4 (X", ¥*) —> Homy(4)(X*,¥*) — > Hom(s) (IX*,Y*).

Since Y* is a complex of A-modules, the map i* must be zero, and consequently 7T* is an isomorphism.
Now we show that T* actually induces an isomorphism between Hom (4 (X *,Y*) and Hom @) (X°,Y*®).

Lemma 4.1. Suppose that A is an Artin algebra and I is an ideal in A. Let A be the quotient algebra
of A modulo 1. If X* is a complex of A-modules and Y* is a complex of A-modules, then we have a
natural isomorphism of R-modules

T Hom%(A)(Y.,Y') — Hom%(A)(X°,Y°).

Proof. Note that we have already an isomorphism
T : Homg 4 X,y — Home(4)(X*,Y*).
Clearly, ©* sends null-homotopic maps to null-homotopic maps. This means that t* induces an epi-
morphism
T Hom%(A)(Y.,Y') — Hom%(A)(X',Y°).

Now let f*:X° — Y* be a chain map such that ©* (f*)=m"f*is null-homotopic. Then there is
a homomorphism A’ : X — Y~! for each integer i such that &' f’ = h'di,"' +di k™. Note that A’
factorizes through 7/, that is, h' = T'g’ for some g’ : X' — Y'~!. Hence we have

n'f = hidy !+ diht!
_ nigid;'/—l +d§ni+1gi+l
=nigldy ! +widl g™
=ni(gldy " +dig™).

It follows that fi = g"df,_1 + d"Yg"Jrl since T is surjective for each i. Therefore, the map f* is null-
homotopic. Thus * is injective. [
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For any complexes X* and X'® over A-mod, we have a natural map
M : Homy (4)(X*, X"*) — Hom () (X", X"),

which is the composition of 73 : Hom j (4)(X*,X"*) — HOI’IIE%/(A)(X',?.) with the map (n*)~! :
Hom%(A)(Xﬂ?.) — Homjg(A)()?',?.) defined in Lemma 4.1. In particular, if X* = X’*, then we
get an algebra homomorphism

n: Endl/(A)(X.) — End%(A)(Y.).

Now, let T be a tilting complex over A, and let B = End (4)(T*). Further, suppose that / is an ideal
in A. By the above discussion, there is an algebra homomorphism

n: End%(A)(T.) — End%(A)(T°)

Let J; be the kernel of 1, which is an ideal of B. Since (7*)~! is an isomorphism, we see that J;
is the kernel of the map n} : End - (4)(T*) — Hom%(A)(T',T°). In fact, J; is also the set of all
endomorphisms of 7* which factorize through the embedding I7* — T°. We denote quotient algebra
B / Jr by B.

In the following, we study when the complex 7" is a tilting complex over the quotient algebra A
and induces a derived equivalence between A and B. The following result supplies an answer to this
question.

Theorem 4.2. Let A be an Artin algebra, and let T* be a tilting complex over A with the endomorphism
algebra B=End ;4 (T*). Suppose that I is an ideal in A, and A :=A/I. Let B be the quotient algebra

of B modulo J;. Then T" is a tilting complex over A and induces a derived equivalence between A and
B if and only if Hom v (4)(T*,IT*[i]) = 0 for all i # 0 and Hom 4 (T*,T°[-1]) =0.

Proof. First, we assume Hom () (T*,17*[i]) = O for all i # 0 and Hom 4 (T*,T°[-1]) = 0.
Applying the functor Homgs 4) (T*,—) to the distinguished triangle
L, L LT
for each integer i, we get an exact sequence
Hom g4 (T°,T°[i]) — HOHI@IJ(A)(T.,T. [i]) — Homgp 4 (T*,IT*[i +1]),
which is isomorphic to the exact sequence
(¥)  Hom o4y (T*, T°[i]) — Hom o (a)(T*,T" [i]) — Hom v (T*,IT*[i + 1]).

Since the first and third terms of (x) are zero for i # 0, —1, the middle term Hom -+ 4) (T*,T°[i]) must
be zero for i # 0, —1. Thus, taking our assumption into account, we have

T°l) :Homzygb(A)(T'T'[i])
T

~ HOITIJ//b(A)(T s
=0

Hom s 5_proj) (T,

for all i # 0. Thus T" is self-orthogonal in Z°(A).
Note that the functor

(A/1) @ — : A °(A-proj) — H°(A-proj)
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sends T to T". Let C be the full triangulated subcategory of .#(A-proj) generated by add(T"), and
let D be a full triangulated subcategory of #°(A-proj) consisting of those X* for which (A/I) ®% X*
belongs to C. Then D contains add(7*). Therefore D = .#®(A-proj), and consequently add(A)
is contained in C. Thus C = #°(A-proj), and T is a tilting complex over the quotient algebra
A. Since Hom (4 (T*,IT*[1]) = 0, by the exact sequence (x), we have a surjective map 73 :
Hom v (4)(T*,T°) — Hom v 4 (T*,T"). Therefore, the algebra homomorphismn : End 04y (T°) —
End v (4) (T") is an epimorphism. Hence

B =End yv(4)(T*)/Ker(n) ~ End%/b(A)(T') ~End ) (T*).

Consequently, the tilting complex T induces a derived equivalence between A and B.

Conversely, we assume that 7" is a tilting complex over A and induces a derived equivalence
between A and B. Then Hom (7, (T*,T"°[i]) = 0 for all i # 0. Note that, for each integer i, we have an
exact sequence

(sx)  Hom gy (T*, T [i —1]) — Hom yu(s) (T*IT*[i]) — Hom o4 (T*, T°[i]).

Since Hom v 4 (T*,T°[i—1]) ~Hom # @) (T*,T"[i—1]) and since T* is self-orthogonal, the first and
third terms of (xx) are zero for i # 0, 1. It follows that Hom (4 (7°,/T*[i]) = 0 for all i £ 0,1. We
claim that Hom v (4)(7*,IT*[1]) = 0. Indeed, we consider the following exact sequence

L]
T

Hom i 4) (T*,1T%) — " Hom s 4 (T*, T*)

HOl’nng(A) (T.,T.) —

Hom%/b(A)(T',IT'[l]) — Hom%b(M(T', T.[l]) =0.

Since the kernel of @ is J;, the image of 7¢ is isomorphic to B as R-modules. But we already have
B >~ End o4 (T"*), which is isomorphic to Hom ) (T*,T") as an R-module. Hence the map 72 is
surjective, and Hom v () (7°,IT°*[1]) = 0. Clearly, Homfb(A)(T°,T°[—1]) = 0. Altogether, we have
shown that Hom ;v (4) (7®,1T°[i]) = O for all i # 0 and Hom%b(A)(T°, T°[—1]) = 0. This completes
the proof of Theorem 4.2. [

4.2 Derived equivalences for self-injective algebras modulo socles

In the following, we shall use Theorem 4.2 to prove our second main result in this paper. Let us first
prove the following lemma.

Lemma 4.3. Let A be a self-injective basic algebra, and let P be a direct summand of sA.

(1) If J is an ideal of A such that 4J ~ gsoc(P), then J = soc(P).

(2) If T* is a radical tilting complex over A such that the endomorphism algebra of T* is self-
injective and basic, then T' ~ Vv, T' for all integers i.

Proof. (1) Let e be the sum of the idempotents corresponding to the simple direct summands of
soc(P). By assumption, we have J C soc(A) and eJ = J. Hence J = eJ C e(soc(A)) = soc(P), and
consequently J = soc(P).

(2) Let B be the endomorphism algebra of T*. Then there is a derived equivalence F : Z°(A) —
2°(B) such that F(T*) ~ B. Since B is a self-injective basic algebra, and since F commutes with
the Nakayama functor v, we have F(v4T*®) ~ vgF (T*) ~ vgB ~ B ~ F(T*). Consequently, we have
T* ~v,T* in Z°(A). Since A is self-injective, we see that v4T* is also a complex in .#°(A-proj).
Hence v4T*® ~ T* in #°(A-proj), and consequently T* ~ v,T* in €*(A) since both T* and v,T* are
radical complexes. Thus, the statement (2) follows. [
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Theorem 4.4. Suppose that A and B are basic self-injective Artin algebras, and that F : 2°(A) —
9°(B) is a derived equivalence. Let P be a direct summand of 4A, and let P’ be a direct summand of
BB such that F (soc(P)) is isomorphic to soc(P"). Then the quotient algebras A /soc(P) and B/soc(P')
are derived-equivalent.

Proof. Since A and B are basic self-injective algebras, soc(P) and soc(P’) are ideals in A and B,
respectively. In the following, we shall verify that the conditions of Theorem 4.2 are satisfied by the
ideal soc(P) in A and the tilting complex 7'* associated to F. L L

Since F(soc(P)) is isomorphic to soc(P’), we can assume that P = P, and P = | P/,
where P and P’ are indecomposable such that F (soc(P;)) is isomorphic to soc(P/) forall i =1,---,s.
Let D; be the endomorphism ring of soc(P;), which is a division ring. Since F(soc(P;)) ~ soc(P/),
we see that D; is isomorphic to Endg(soc(P!)). Note that a radical map f : M| — M, between two
projective modules M; and M, has image contained in rad(M;). Since all the differential maps of 7°*
are radical maps, the image of d% is contained in rad(T**!) for all integers k. It follows that

Homy (T",s0c(P;)) =~ Hom () (T°[n],soc(P;))
>~ Hom g (T*[n],soc(P;))
~ Homgpng)(B[n],soc(P/))
=0

for all n # 0. Hence, for each integer n # 0, the module v;lPi is not a direct summand of 7". Since
T" ~vaT" (Lemma 4.3(2)), we infer that P; is not a direct summand of 7" for all n # 0. Recall that
Hom o (4) (T*,s0c(P;)) =~ Homgs ) (B,s0c(P/)) =~ soc(P/) as D;’-modules. Since B is basic, we see
that soc(P/) is one- dimensional over D;*. Hence Homgp4)(T*,s0c(P;)) is one-dimensional over D{®.
It follows that vglPi is a direct summand of T° with multiplicity 1. Since vaT? ~ 70, we see that P;
is a direct summand of T° with multiplicity 1. Note that soc(P;)X = 0 for any A-module X if P; is
not a direct summand of X. Hence soc(P;)T* is isomorphic to the stalk complex soc(P;)P; = soc(P;).
Therefore
Hom v (4) (T*,50¢(P)T*[n]) = Hom 4 (T, @i s0c(F;)[n]) = 0

for all n # 0.
Let T" be the quotient complex 7* /(soc(P)T*). There is a canonical triangle in 2°(A):

soc(P)T* 2 T° —T° — (soc(P)T*)[1].

Applying Homgp 4) (T*,—) to this triangle, we have an exact sequence of B-modules:

0— Hom@b(A)(T°,T'[—l]) — Homgp(4) (T°,s0c(P)T*) N Hom () (T°,T°).

L
We claim that A, is a monomorphism. Since soc(P)T* is isomorphic to  }_;soc(P;)T*, the map A
can be written as (A, ---,Ay)"”, where A; : soc(P;)T* — T* is the canonical map, and where ¢r stands
for the transpose of a matrix. Now we consider the following commutative diagram of B-modules:

Hom i ) (T*, s0c(P)T*) 2 Hom o (T*,T*)

J/ F("'i)* l

Homg(B, F (soc(P;)T*)) Homg (B, B).

1

Since A; # 0, we see that F(A;) is nonzero. Moreover, F(soc(P;)T*®) ~ F(soc(P;)) ~ soc(P/). This
implies that F(soc(P;)) is a simple B-module for all i. Hence F(A;), must be injective. To show
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that A, is injective, it suffices to show that F(A), is injective. This is equivalent to proving that
(F(A1)s, -+ ,F(As)«)" is injective. For this, we use induction on s. If s = 1, the foregoing discus-
sion shows that this is true. Now we assume s > 1. Then the kernel K of (F(Ay)s, - ,F(Ag).)"
is the pull-back of (F(A;)«, -+, F(As—1)+)" and F(A). both of which are monomorphisms by in-
duction hypothesis. Thus K is isomorphic to a submodule of both Homgn (4 (7, S~ 'soc(P)) and
Hom g4y (T*,s0c(Py)). However, the B-modules Hom g4y (T*,s0c(P;)) =~ soc(P/),i = 1,--- s, are
pairwise non-isomorphic simple B-modules since B is basic. This implies that K = 0. Hence A, is

injective, and therefore Homgn 4y (T, T [—1]) = 0. Since
Hom o4y (T", T [—1]) = Hom o4 (T*, T" [—1]) ~ Homgp ) (T*, T" [-1]),

it follows that Hom %b(A)(T.,T.[—l]) = 0. Hence the complex 7* and the ideal soc(P) satisfy all
conditions in Theorem 4.2. Thus A/soc(P) and B/J are derived-equivalent, where J is the ideal of B
consisting of maps b factorizing through the canonical map soc(P)T* — T'°*. Moreover, J is isomor-
phic to Hom v (4)(T*,s0c(P)) as B-modules, and the latter is isomorphic to soc(P'). By Lemma 4.3
(1), we have J = soc(P’), and the theorem is proved. [J

We give a criterion to judge when a derived equivalence satisfies the condition in Theorem 4.4.

Proposition 4.5. Let T* = (T',d") be a tilting complex associated to a derived equivalence F between
self-injective basic Artin algebras A and B, and let P be an indecomposable projective A-module.
Suppose we have the following:

(1) P ¢ add(vaT') for all i # 0;

(2) the multiplicity of P as a direct summand of VAT is one.
Let Ty be the indecomposable direct summand of T* such that P is a direct summand of VA(TIQ ), and
let P be the projective B-module Va(Hom o4 proj) (T*,17)). Then F(soc(aP)) ~ soc(gP).

Proof. We know that the Nakayama functor sends P to the injective envelope of top(4P). From (1)
it follows that Homy (T",s0c(4P)) = 0 for all i # 0. Consequently, Hom g4 (T, soc(4P)[i]) = O for
all i # 0. This means that F (soc(4P)) is isomorphic in Z°(B) to a B-module X that is indecomposable.
Now we have the following isomorphisms:

Homp(B,X) =~ Homgp4) (T*,50¢(4aP)) = Hom s 4y (T, s0c(4P)) ~ Homp (Vg P, X).

Hence soc(pP) is the only simple B-module which occurs as a composition factor of X. If X were
not simple, then we would get a nonzero homomorphism X — top(X) — soc(X) — X, which is not
an isomorphism. This is a contradiction since Endp(X) =~ Endgn ) (F (soc(aP)) ~ Enda(soc(4P)) is
a division ring. Hence X is simple and isomorphic to soc(gP). This finishes the proof. []

4.3 Derived equivalences for algebras modulo annihilators

Now, we turn to another construction for derived-equivalent quotient algebras by using idempotent
elements, which can be regarded as another consequence of Theorem 4.2.

Lemma 4.6. Let e be an idempotent of an Artin algebra A. Then there is a unique left ideal I of A,
which is maximal with respect to the property el = 0. Moreover, the I is an ideal of A. If, in addition,
add(Ae) = add(D(eA)), then Ie = 0.

Proof. Note that such a left ideal / in A exists, and any left ideal L in A with eL = 0 is contained
in /. Clearly, I is a left ideal in A. We have to show that / is a right ideal in A. Let x € A and a € I.
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Since the right multiplying with x is a homomorphism ¢ from 4A to 4A, we see that the image ¢(/) of
I under @ is a left ideal in A. Since el =0, we have @(/) C I, and ax € I
Suppose add(Ae) = add(D(eA)). It follows from

0 = el =Homy (Ae,I) ~ Homy (I,D(eA))

that Homy (1,Ae) = 0. Clearly, the map y : I — Ae giving by x — xe is a homomorphism from / to Ae.
Thus y =0and Ie =0. O

Let A be an Artin algebra and e an idempotent of A such that add(Ae) = add(D(eA)). By a result
in [4], there is a tilting complex T'* associated to e, which is defined in the following way: suppose @
is a minimal right add(Ae)-approximation of A. Then we form the following complex:

T': 0— 0 —A—0

with A in degree zero. Let T,” := (Ae)[1]. The tilting complex 7* associated with e is defined to be the
direct sum of 7. and 777. Let A, : T,? — T* be the canonical inclusion and p, : T* — T, the canonical
projection. Then &:= p,A, is an idempotent in B := End j-(4)(T*), which corresponds to the summand
T? of T*. Thus, there is a derived equivalence F : 2°(A) — 2°(B), which sends T,* to B¢, and T7 to
B(1—¢). Let V(e) and V(€) be the ideal I of A and B defined by e and ¢ in Lemma 4.6, respectively.
With these notations in mind, we have the following proposition.

Proposition 4.7. Let A be an Artin algebra and e an idempotent element in A such that add(D(eA)) =
add(Ae). Suppose that T* =T, @ T7 is the tilting complex defined by the idempotent e and B =
End y(4)(T*). Let & be the idempotent element in End 4(4)(T*) corresponding to T,'. Then A/V (e) is
derived-equivalent to B/V(é).

Proof. Let F : 2°(A) — 2°(B) be the derived equivalence given by the tilting complex 7. Then
F(T?) = F(Ae)[1]) ~ Bé.

The complex V(e)T* is isomorphic to V(e) because, by Lemma 4.6, we have V(e)Ae = 0 and
V(e)T* = V(e), which is a complex with the only non-zero term V(e) in degree zero. It is easy to see
that Hom (4 (T*,V(e)[i]) = 0 for all i 0. Let T be the quotient complex 7*/V(e)T*®. Then T" is
of the following form:

5

0—>Ae®Q —=41—>0,

where A = A/V(e), and where @ is the composition of ¢ with the canonical surjection from A to A.
Since Hom - (4) (77, 7.°[—1]) = 0, we get Homy (Coker(¢),Ae) = 0. Moreover, since Coker(@) is a
quotient module of Coker(¢), we have Homy (Coker(¢),Ae) = 0. Thus

HOIII:%/(A) (T.,T.[—l]) =0.

By Theorem 4.2, T" is a tilting complex over A/V/(e), and A/V (e) is derived-equivalent to B/J, where
J={a®* € End 44 (T*) | a°n*® = 0}, and where the map ©t* is the canonical map from 7'* to T"®. Note
that V(e)T,* = 0. This allows us to rewrite ©° as

Y]

ol —=1T, o T;/(V(e)Tf').
For any a* € J, we can write a® as
|:°‘Tl “Tz}
a3) 95

TPeT LT oT).
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Since a*n® = 0, we have af; =0 = a3, and aj,n} = 0 = a3,7}. Hence aj, : ' — T} factorizes
through V(e)T7 = V(e). But Hom y(4)(Z;",V(e)) = 0. This implies that af, = 0. Consequently, J
consists of maps o* of the form
0 0
[ 0 0‘52]

with a3,7} = 0. Therefore &/ =0 and J C V(&). By the proof of Theorem 4.2, we know that the
quotient B-module B/J is isomorphic to Hom A (A) (T',T’). Note that we have a distinguished triangle

A/V(e) — T — (Ae® Q1)[1] — (A/V(e))[1]
in JZ'(A). Applying the functor Hom ;- (4)(T*, —) to this triangle, we get an exact sequence
Homj/(A)(T',A/V(e)) — Hom%(M(T',T') — HOH]J/(A)(T., (Ae@ Ql)[l])

By the maximality of V(e), the quotient A/V(e) has no submodule X with eX = 0. Since ¢ is a right
add(Ae)-approximation of A, we have e(Coker(@)) = 0. It follows that Homy (Coker(¢), A/V(e)) =0.
Hence we have Hom  (4)(T*,A/V(e)) = 0. Consequently, Hom%(A)(T',TU can be embedded in
Hom - (4)(T*, (Ae® Q1)[1]), which is in add(Bé) = add(D(éB)). This means that J is the maximal
submodule of B with &/ = 0. Hence J = V(€), and this finishes the proof. [J

We point out that there is another type of construction by passing derived equivalences between
two given algebras to that between their quotient algebras, namely, forming endomorphism algebras
first, and then passing to stable endomorphism algebras. For details of this construction, we refer the
reader to [5, Corollary 1.2, Corollary 1.3].

Now, we end this paper by two simple examples to illustrate our results.

Example 1. Let k be a field, and let A be a k-algebra given by the quiver

1 o
P EE——

P2
y
o3
°
3

W

1 2

°
%
05

with relations o;B; 11 — Bioii2 = oo+ 1 = BiPfi—1 = 0, where the subscripts are considered modulo 3.
This algebra is isomorphic to the group algebra of the alternative group A4 if k has characteristic 2.
Let e, be the idempotent corresponding to the vertex 2, and let T* be the tilting complex 7* associated
with e;. Then the endomorphism algebra B of 7' is given by the quiver

%m

o

e_—"eo o

15 2 3

with relations od = YB = dafy— Bydor = 0. Note that B is isomorphic to the principal block of the group
algebra of As if k has characteristic 2. It is easy to see that the idempotent &, is the idempotent corre-
spond to the vertex 2 in the quiver of B. Thus, by Proposition 4.7, the algebras A/V(e;) and B/V(&,)
are derived-equivalent. A calculation shows that A/V(e;) =A/{0,P3) and B/V(é;) = B/(pyda). Note
that the quotient algebras A/(0f33) and B/(Byda) are stably equivalent of Morita type by a result in
[8]. Thus A/{a2B3) and B/(Byda) are not only derived-equivalent, but also stably equivalent of Morita

type.
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Example 2. Let m > 3 be an integer, and let A = k[¢]/(¢"), the quotient algebra of the polynomial
algebra kt] over a field k in one variable r modulo the ideal generated by . Let X be the simple
A-module k. Then E}(A @ X) and EY(A © Q4 (X)) are infinite-dimensional k-algebras which can be
described by quivers with relations:

Ef(AaX) E}(A®Q4(X))
" END
-~ %x

OCQ? DS I A s

o —By=af=you =78 =0; xzi=2ziy=0,i=1,2;
dy=P8=0,i=1,2; 3 =z120— 22 =0;
6% = 5152 —6261 =0. (yx)mfl =0.

By Theorem 3.4, or Corollary 3.14, the two algebras E}(A @ X) and E}(A ® Q4 (X)) are derived-
equivalent.

Let n > 1 be a natural number. Then the finite-dimensional k-algebra Ef(l"") (A®X) is the quotient
of E} (A @ X) by the ideal generated by 6[25}“ for n an odd number, and by 8,8%/% and 82> for n an
even number, where [5] is is the largest integer less than or equal to n/2, and the finite-dimensional

algebra Ef;(l’") (A® Q4 (X)) is the quotient of B (A ® Q4 (X)) by the ideal generated by Z[2§]+1 for n

an odd number, and by zlzg/ * and zg/ > for n an even number. By Corollary 3.14, we know that

Ef(l ") (A®X) and Ef(]’n) (A®Q4(X)) are both derived and stably equivalent.
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