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The famous finitistic dimension conjecture says that every finite-dimensional K-algebra
over a field K should have finite finitistic dimension. This conjecture is equivalent to
the following statement: If B is a subalgebra of a finite-dimensional K-algebra A such
that the radical of B is a left ideal in A, and if A has finite finitistic dimension, then B
has finite finitistic dimension. In the paper, we shall work with a more general setting of
Artin algebras. Let B be a subalgebra of an Artin algebra A such that the radical of B is
a left ideal in A. (1) If the category of all finitely generated (A, B)-projective A-modules
is closed under taking A-syzygies, then fin.dim(B) ≤ fin.dim(A) + fin.dim(BA) + 3,
where fin.dim(A) denotes the finitistic dimension of A, and where fin.dim(BA) stands
for the supremum of the projective dimensions of those direct summands of BA that
have finite projective dimension. (2) If the extension B ⊆ A is n-hereditary for a non-
negative integer n, then gl.dim(A) ≤ gl.dim(B)+n. Moreover, we show that the finitistic
dimension of the trivially twisted extension of two algebras of finite finitistic dimension
is again finite. Also, a new formulation of the finitistic dimension conjecture in terms
of relative homological dimension is given. Our approach in this paper is completely
different from the one in our earlier papers.
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1. Introduction

In the representation theory of Artin algebras, there is a well-known conjecture:
For any Artin algebra, its finitistic dimension is finite. This is the so-called fini-
tistic dimension conjecture (see [3; 2, p. 409]). It is over 45 years old and remains
open to date. The significance of this conjecture lies on the well-known fact that an
affirmative answer to the finitistic dimension conjecture implies the validity of the
other seven homological conjectures in the modern representation theory of Artin
algebras (see [2, p. 409; 27]). To understand the conjecture, a new idea was intro-
duced in [23, 24] to control finitistic dimension by using a chain of algebras with
certain properties on their radicals. This is applicable for general finite-dimensional
algebras. It turns out that, for a field K, the following two statements are equivalent:

(1) For any finite-dimensional K-algebra A, the finitistic dimension of A is finite.
(2) If C is a subalgebra of a finite-dimensional K-algebra B such that the radical

of C is a left ideal in B, and if B has finite finitistic dimension, then C has
finite finitistic dimension.

This suggests that it would be interesting to consider a pair B ⊆ A of algebras
A and B, and to try bounding the finitistic dimension of the smaller algebra B

by that of the bigger algebra A. In other words, for which extensions B ⊆ A does
the statement (2) hold? Such a consideration seems to be reasonable because the
module category of A is sometimes much simpler than that of B. In fact, some
of the discussions in this direction have been done already in [23, 24], where the
representation-finite type and finite global dimension are involved for comparison
of finitistic dimensions of B and A.

Recall that an Artin algebra A is called a separable extension of a subalgebra
B of A with the same identity if the multiplication map A ⊗B A → A splits as
A–A-bimodules. This is a generalization of the notion of a separable algebra over a
field. An extension B ⊆ A of Artin algebras is called (left) semisimple if every left
A-module is (A, B)-projective in the sense of Hochschild [15], or equivalently, the
multiplication map µ : AA⊗B X → AX of A-modules splits for every left A-module
AX , that is, there is a homomorphism ϕ : X → A⊗B X of A-modules such that ϕµ

is the identity map on X (for other equivalent conditions, see [2, Proposition 3.6,
p. 202] or [13], for instance). Of course, one may define the right semisimple exten-
sion analogously by using right A-modules. The name “semisimple extension” is
justified by the fact that a finite-dimensional K-algebra over a field K is semisimple
if and only if the extension K ⊆ A is semisimple. Clearly, a separable extension is
both semisimple and right semisimple. In general, a semisimple extension does not
have to be separable because a semisimple algebra over a field does not have to be
a separable algebra. Another example of a semisimple extension is the extension
B ⊆ A such that B and A have the same radical. One may also construct new
examples of semisimple extensions by using a result in [11]. A semisimple extension
will also be called a 0-hereditary extension in this paper.
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Now, let us introduce the notion of n-hereditary extensions for 1 ≤ n < ∞.
An extension B ⊆ A of algebras is called 1-hereditary (or hereditary) if every A-
submodule of an (A, B)-projective A-module is (A, B)-projective. Thus, semisimple
extensions are 1-hereditary extensions. The converse in general is not true. Again,
the name “1-hereditary extension” is justified by the fact that a finite-dimensional
K-algebra A over a field K is hereditary if and only if the extension K ⊆ A is
a 1-hereditary extension. Similarly, if the kernel of any homomorphism between
two (A, B)-projective modules is (A, B)-projective, then we say that the extension
B ⊆ A is 2-hereditary. In general, an extension B ⊆ A is said to be n-hereditary

if, for any exact sequence 0→ Xn → · · · → X1 → X0 of A-modules with Xj being
(A, B)-projective for 0 ≤ j ≤ n − 1, the module Xn is (A, B)-projective. Clearly,
an n-hereditary extension is an (n + 1)-hereditary extension for 0 ≤ n <∞. In this
note, an extension B ⊆ A of Artin algebras is said to be relatively hereditary if the
extension B ⊆ A is n-hereditary for some non-negative integer n.

Suppose that we have an extension C ⊆ B of Artin algebras such that the
radical of C, denoted by rad(C), is a left ideal of B. In this note, we shall compare
the global and finitistic dimensions of C with that of B. In particular, we shall
show that the statement (2) is true if the category of (B, C)-projective B-modules
is closed under taking B-syzygies. This includes the case of n-hereditary extensions.
More precisely, we shall prove the following general result.

Theorem 1.1. Let A be an Artin algebra and B be a subalgebra of A such that the
radical of B is a left ideal in A.

(1) Suppose that the category of all finitely generated (A, B)-projective A-
modules is closed under taking A-syzygies. Then fin.dim(B) ≤ fin.dim(A) +
fin.dim(BA) + 3, where fin.dim(A) denotes the finitistic dimension of A, and
where fin.dim(BA) = max{proj.dim(BX) | X is a direct summand of BA with
proj.dim(BX) <∞}.

(2) Suppose that A is an n-hereditary extension of B for a non-negative integer n.

Then gl.dim(A) ≤ gl.dim(B) + n ≤ gl.dim(A) + proj.dim(BA) + n + 2.

In general, for finitistic dimension, we cannot get fin.dim(A) ≤ fin.dim(B) + n

if A is an n-hereditary extension of B. Thus, Theorem 1.1 shows that the notions
of global and finitistic dimensions behave completely differently, even though the
finitistic dimension of an algebra coincides with its global dimension if the global
dimension is finite.

Note that, for semisimple extensions B ⊆ A, there were some discussions on their
global, weakly global and finitistic dimensions (see, for example, [6, 8]). Here, the
extensions we consider are more general, including semisimple extensions. Further-
more, Theorem 1.1 requires a radical condition which is motivated by considering
finitistic dimension conjecture, and is not of homological feature, while results in
the literature put homological conditions on the B-module A, for instance, BA or
AB is projective as a B-module. For details, we refer the reader to [6, 8].
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As a direct corollary of Theorem 1.1, we have the following corollary.

Corollary 1.2. Suppose that A is an Artin algebra and B is a subalgebra of A such
that B and A have the same radical. If fin.dim(A) <∞, then fin.dim(B) <∞.

As a consequence of Corollary 1.2, we have the following result which states
that the gluing idempotent procedure preserves the finiteness of finitistic dimension
(see [23]), and therefore generalizes the result [24, Corollary 3.11].

Corollary 1.3. Let A0, A1 and A2 be three algebras with A0 semi-simple. Given
surjective homomorphisms fi : Ai → A0 of algebras for i = 1, 2, we denote by A the
pullback of f1 and f2 over A0. If the finitistic dimension of Ai is finite for i = 1, 2,

then the finitistic dimension of A is finite.

Let us remark that, for an extension B ⊆ A, even under the condition rad(B) =
rad(A), the module category of B can be much more complicated than that of A.
An easy example illustrates this point. Let A be the algebra of 4×4 upper triangular
matrices over a field K, and let B be the subalgebra of A generated by the identity
matrix and the radical of A. Then rad(B) = rad(A), and B is representation-wild,
while A is representation-finite with 10 non-isomorphic indecomposable modules.
In fact, any algebra A with at least three arrows in its quiver contains a subalgebra
B of wild type with rad(B) equal to rad(A).

Also, the proof of Theorem 1.1 implies the following result in which we only
assume that A, viewed only as a right B-module, satisfies some homological condi-
tion, while in the literature such conditions are imposed on both sides.

Corollary 1.4. Let A be an Artin algebra and B be a subalgebra of A such that
rad(B) is a left ideal in A and that the projective dimension of the right B-module
AB is finite. Then fin.dim(B) ≤ fin.dim(A) + proj.dim(AB) + 2.

Finally, we give lower and upper bounds for the finitistic dimensions of algebras
in terms of those of certain subalgebras. This shows, in particular, that the finiteness
of finitistic dimensions is preserved by taking trivially twisted extensions, or dual
extensions. For unexplained notions in the following result, we refer the reader to
Sec. 3.

Theorem 1.5. Suppose that A decomposes into a twisted tensor product B ∧C of
its subalgebras B and C over a common maximal semisimple subalgebra of A. If
fin.dim(B) = m <∞ and fin.dim(C) = n <∞, then m ≤ fin.dim(A) ≤ m+n <∞.

Note that Corollary 1.2 provides a partial answer to Question 1 in [24]; while
Theorem 1.5 extends the result [23, Corollary 3.9].

Our approach in this paper is different from the earlier papers [23, 24, 26],
namely, instead of employing the Igusa–Todorov function from [16], we only
use properties of relatively projective modules to get our results. The proofs of
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Theorems 1.1 and 1.5 will be given in Secs. 2 and 3, respectively, where we estab-
lish actually a relationship between the finitistic dimensions of the two algebras
A and B under our assumptions. A variation of Theorem 1.1(1) can be found in
Proposition 2.10. In Sec. 2, we also provide an equivalent formulation of the finitistic
dimension conjecture in terms of extensions and relative global dimensions.

2. Proof of Theorem 1.1

In this section, we give a proof of the main result, Theorem 1.1. First, let us recall
some definitions and introduce some notation.

Given an Artin R-algebra A over a commutative Artin ring R with identity,
we consider the category A-mod of all finitely generated left A-modules. The usual
duality of Artin algebra, defined by the injective hull of the R-module R/rad(R),
is denoted by D. The nth syzygy operator of A-mod is denoted by Ωn

A. For an
A-module M , we use rad(AM) to denote the Jacobson radical of M , and topA(M)
to denote the top of M , that is, topA(M) = M/rad(AM); the projective dimension
of M is denoted by proj.dim(AM).

For convenience, homomorphisms will be written on the opposite side of the
scalars. Thus the composition of two homomorphisms f : X → Y and g : Y → Z

of A-modules is written as fg which is a homomorphism from X to Z. In this way,
HomA(X, Y ) becomes naturally an EndA(X)–EndA(Y )-bimodule.

If B is a subalgebra of an Artin algebra A with the same identity, we say that
B ⊆ A is an extension. A subcategory C of A-mod is said to be closed under syzygies
if, for any module X in C, the first syzygy ΩA(X) of X belongs to C. Thus, if C is
closed under syzygies, then Ωi

A(X) ∈ C for all i ≥ 1 whenever X ∈ C.
By definition, the finitistic dimension of an A-module AM , denoted by

fin.dim(AM), is

fin.dim(AM)

= sup{proj.dim(AM ′) |M ′ is a direct summand of M, proj.dim(AM ′) <∞},

and the finitistic dimension of the algebra A, denoted by fin.dim(A), is

fin.dim(A) = sup{fin.dim(AM) |M ∈ A-mod}.

Note that fin.dim(AM) is always finite if AM ∈ A-mod.
Similarly, one may define the right finitistic dimension of A by using the projec-

tive dimensions of right A-modules. In general, fin.dim(A) 	= fin.dim(A
op

), where
A

op
stands for the opposite algebra of A. However, if we use the injective dimen-

sions of left A-modules to define the finitistic injective dimension of A, denoted by
fin.inj.dim(A), then fin.dim(A) = fin.inj.dim(A

op
).

The famous finitistic dimension conjecture states that there exists a uniform
bound for the finite projective dimensions of all finitely generated (left) A-modules
of finite projective dimension, namely fin.dim(A) < ∞. This conjecture is closely
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related to the Nakayama conjecture, Gorenstein symmetry conjecture, Wakamatsu
tilting conjecture, and other homological conjectures (for details, see [2, 4, 24, 27]).

To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. Let A be an Artin algebra, and let M be an A-module.

(1) If there is an exact sequence

0→ Xs → · · · → X1 → X0 →M → 0

of A-modules with proj.dim(AXi) ≤ k for all i, then proj.dim(AM) ≤ s + k.

(2) (Nakayama lemma): If rad(AM) = M, then M = 0.

(4) If I is an ideal in A, then, for every A/I-module X, HomA(M, X) 

HomA(M/IM, X). In particular, if X is a semisimple A-module, then
HomA(M, X) 
 HomA(M/rad(M), X).

The following lemma establishes a way of lifting modules over a subalgebra to
modules over a given algebra.

Lemma 2.2 ([23, Erratum, Lemma 0.1, p. 325]). Let A and B be two Artin
algebras with B a subalgebra of A. Suppose that rad(B) is a left ideal of A. If X is
a B-module, then Ωi

B(X) is an A-module for all i ≥ 2.

Suppose that B ⊆ A is an extension of Artin algebras. If X is an A-module,
then X can be considered as a B-module by restriction. If rad(B) ⊆ rad(A), we
have that topB(X) 
 BtopA(X) ⊕ rad(AX)/rad(BX). If rad(B) is a left ideal in
A, then rad(BX) is an A-module for any A-module X . Moreover, since rad(BP ) is
an A-module for every projective B-module P , we see that ΩB(X) is an A-module
for any A-module X .

We should note that, for the extension B ⊆ A, the condition that rad(B) is a
left ideal in A does not imply that rad(BY ) has an A-module structure for each
B-module Y . This can be seen by an example in [23, Erratum].

If Y is a B-module, then the map fY : Y → BA ⊗B Y given by y �→ 1 ⊗ y for
y ∈ Y is a homomorphism of B-modules. Note that if AX is an A-module, then the
multiplication map µX : A⊗B X → X is a homomorphism of A-modules. Thus µX

is also a homomorphism of B-modules by restriction. Clearly, we have fXµX = idX .
This shows the following lemma.

Lemma 2.3. Let A be an Artin algebra and B be a subalgebra of A. Then, for any
A-module X, there is a split exact sequence of B-modules:

0→ BX → BA⊗B X → (A/B)⊗B X → 0.

Note that A can be regarded as a B–B-bimodule by restriction. Thus the quo-
tient A/B of the B–B-bimodule A by its subbimodule B has a natural B–B-
bimodule structure.
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Recall that, for an extension B ⊆ A of algebras, an A-module X is called (A, B)-
projective if the multiplication map µX : A ⊗B X → X splits as A-modules. This
is equivalent to saying that AX is a direct summand of AA ⊗B X . Clearly, each
projective A-module Y is (A, B)-projective, and every A-module of the form A⊗BY

with Y ∈ B-mod is (A, B)-projective. The full subcategory of A-mod consisting of
all (A, B)-projective A-modules will be denoted by P(A, B). Note that P(A, B) is
contravariantly finite in A-mod (see [15, Proposition 2]). Moreover, it is functorially
finite in A-mod (see [17]).

Similar to the usual definitions of projective dimension and global dimension,
one can employ (A, B)-projective modules to define the so-called relative projective
dimension of an A-module and the relative global dimension of A with respect to B,
respectively. That is, for an A-module X , we define the relative projective dimension
of X to be the minimal number n such that there is an exact sequence

0→ Pn → · · · → P1 → P0 → X → 0

with the following two properties:

(1) All Pj are (A, B)-projective.
(2) For any (A, B)-projective module X ′, the sequence

0→ HomA(X ′, Pn)→ · · · → HomA(X ′, P1)

→ HomA(X ′, P0)→ HomA(X ′, X)→ 0

is exact.

If such an exact sequence does not exist, then we say that the relative projective
dimension of X is infinite. The relative global dimension of the extension B ⊆ A

is the supremum of the relative projective dimensions of A-modules, denoted by
gl.dim(A, B).

Also, the relative derived functors Tor and Ext can be defined. For details,
we refer the reader to [5, 15]. We define the relative finitistic dimension of the
extension B ⊆ A to be the supremum of the relative projective dimensions of those
A-modules with finite relative projective dimension, and denote it by fin.dim(A, B).
Note that an extension B ⊆ A is semisimple if and only if gl.dim(A, B) = 0 if and
only if every A-module is (A, B)-projective. Clearly, if the extension B ⊆ A is n-
hereditary, then gl.dim(A, B) ≤ n because the multiplication map A⊗B X → X is
a right P(A, B)-approximation of X for any A-module X .

The following lemma describes (A, B)-projective modules. The first statement is
due to Hochschild [15], and the second follows from the fact that the zero A-module
is (A, B)-projective.

Lemma 2.4. Let B ⊆ A be an extension of Artin algebras.

(1) If BX is a B-module, then A⊗B X is (A, B)-projective.
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(2) If the given extension B ⊆ A is relatively hereditary, then P(A, B) is closed
under kernels of surjective homomorphisms in P(A, B). In particular, it is
closed under taking A-syzygies.

The next lemma establishes a relationship between different syzygies.

Lemma 2.5. Let A be an Artin algebra and B be a subalgebra of A such that
rad(B) is a left ideal of A. Then, for any A-module Y, we have an isomorphism
AΩB(Y ) 
 AΩA(A⊗B Y ) as A-modules.

Proof. Let h : P → Y be a projective cover of the B-module BY . Since B is a
subalgebra of A, we have an exact sequence 0 → B → A → A/B → 0 of B–B-
bimodules, where (A/B)B is semisimple because rad(B) is a left ideal in A and
(A/B) rad(B) = 0. Then we obtain the following exact and commutative diagram
of B-modules:

0 0� �
0 −−−−→ ΩB(Y ) −−−−→ P

h−−−−→ Y −−−−→ 0

fP

� fY

�
A⊗B P

1⊗h−−−−→ A⊗B Y −−−−→ 0

πP

� πY

�
(A/B)⊗B P −−−−→ (A/B)⊗B Y� �

0 0
where the left column is exact since BP is projective, and where the right column is
split exact by Lemma 2.3. Since A/B is semisimple as a right B-module, D(A/B) is
a semisimple left B-module. It follows from Lemma 2.1(3) that D((A/B)⊗B P ) 

HomB(P, D(A/B)) 
 HomB(P/rad(BP ), D(A/B)). Similarly, D((A/B) ⊗B Y ) 

HomB(Y/rad(BY ), D(A/B)). Since h is a projective cover, we have P/rad(BP ) 

Y/rad(BY ). Hence D((A/B)⊗B P ) 
 D((A/B)⊗B Y ). This implies that (A/B)⊗B

P 
 (A/B) ⊗B Y as B-modules. Since all modules considered have finite length,
the surjectivity of the map in the last row of the diagram implies that it is also an
isomorphism. Note that A ⊗B P is a projective A-module. So the kernel of 1 ⊗ h

is isomorphic to ΩA(A⊗B Y ) ⊕Q for some projective A-module Q. Thus we have
the following isomorphism of B-modules:

(∗) BΩB(Y ) 
 BΩA(A⊗B Y )⊕ BQ.

Next, we shall show that (∗) is even and an isomorphism of A-modules. In fact,
since rad(B) is a nilpotent left ideal in A, we know rad(B) ⊆ rad(A). This
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implies that there are injective homomorphisms of A-modules: rad(B)(A⊗B P )→
rad(A)(A ⊗B P ) and rad(B)(A ⊗B Y ) → rad(A)(A ⊗B Y ) given by inclusions.
Note that fP |rad(B)P : rad(B)P → rad(B)(A ⊗B P ) and fY |rad(B)Y : rad(B)Y →
rad(B)(A ⊗B Y ) are injective homomorphisms of A-modules. By [2, Theorem 2.2,
p. 7], the A-homomorphism 1 ⊗ h : A ⊗B P → A⊗B Y can be decomposed as
(h1

0 ) : P1 ⊕ Q → A⊗B Y such that A ⊗B P = P1 ⊕ Q with P1 and Q projective
A-modules, and that h1 = (1 ⊗ h)|P1 : P1 → A⊗B Y is a projective cover of the
A-module A⊗B Y . Note that the A-module Q in this decomposition is the same as
the Q appearing in (∗). Then we have an exact sequence of A-modules:

0→ ΩA(A⊗B Y )⊕ rad(A)Q→ rad(AA⊗B P )→ rad(AA⊗B Y )→ 0.

Let h′ = (1⊗ h)|rad(BA⊗BP ) : rad(BA⊗B P )→ rad(BA⊗B Y ). Then we may form
the following commutative diagram of A-modules with exact rows:

0 −−−−−−→ ΩB(Y ) −−−−−−→ rad(BP ) −−−−−−→ rad(BY ) −−−−−−→ 0

?
?
y

?
?
y

?
?
y

0 −−−−−−→ Ker(h′) −−−−−−→ rad(BA ⊗B P )
h′

−−−−−−→ rad(BA ⊗B Y ) −−−−−−→ 0

?
?
y

?
?
y

?
?
y

0 −−−−−−→ ΩA(A ⊗B Y ) ⊕ rad(A)Q −−−−−−→ rad(AP1 ⊕ AQ) −−−−−−→ rad(AA ⊗B Y ) −−−−−−→ 0

Since the two maps in the middle column are injective, we know that the composi-
tion of the two maps in the first column are injective, too. Thus we have an injective
homomorphism

ΩB(Y )→ ΩA(A⊗B Y )⊕ rad(A)Q

of A-modules, which can be composed further with the canonical inclusion ΩA(A⊗B

Y )⊕ rad(A)Q→ ΩA(A⊗B Y )⊕Q. In this way, we get an injective homomorphism
from the A-module ΩB(Y ) to the A-module ΩA(A⊗B Y )⊕Q. As a result, we obtain
an isomorphism:

ΩB(Y ) 
 ΩA(A⊗B Y )⊕Q 
 ΩA(A⊗B Y )⊕ rad(AQ)

as A-modules by (∗). Thus Q = 0 by the Nakayama lemma (see Lemma 2.1(2)),
and ΩB(Y ) 
 ΩA(A⊗B Y ) as A-modules. This shows also that 1⊗h is a projective
cover of the A-module A⊗B Y . The proof is completed.

As an immediate consequence of Lemma 2.5, we have the following corollary in
which we do not assume that B is a direct summand of BAB as a B–B-bimodule
(see [6, 7, Lemma 4.2, Theorem 4.3] for a comparison).

Corollary 2.6. Let A be an Artin algebra and B be a subalgebra of A such that
rad(B) is a left ideal in A and that proj.dim(AB) < ∞. Then fin.dim(B) ≤
fin.dim(A) + proj.dim(AB) + 2.
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Proof. Suppose proj.dim(AB) = n < ∞. Let BX be a B-module with
proj.dim(BX) < ∞. Then Y := Ωn+2

B (X) is an A-module by Lemma 2.2. If
0 → Pm → · · · → P1 → P0 → BY → 0 is a minimal projective resolution
of the B-module BY , then the sequence 0 → A ⊗B Pm → · · · → A ⊗B P1 →
A ⊗B P0 → A ⊗B Y → 0 is exact since TorB

j (AB, Y ) = TorB
j (A, Ωn+2

B (X)) 

TorB

n+j+2(AB , X) = 0 for j ≥ 1. Moreover, the proof of Lemma 2.5 shows that
this sequence is also a minimal projective resolution of the A-module AA ⊗B Y .
Thus proj.dim(BY ) = proj.dim(AA ⊗B Y ) ≤ fin.dim(A). This implies that
proj.dim(BX) ≤ fin.dim(A) + n + 2 and fin.dim(B) ≤ fin.dim(A) + n + 2.

Note that, by [26, Corollary 3.16], we may replace “proj.dim(AB) <∞” by “the
Gorenstein-projective dimension of the right B-module AB is finite” in Corollary 2.6
to get a more general result.

Another consequence of Lemma 2.5 is the following result.

Corollary 2.7. Let A be an Artin algebra and B be a subalgebra of A such that
rad(B) is a left ideal of A.

(1) If AY is an (A, B)-projective A-module, then AΩB(Y ) 
 ΩA(Y ) ⊕ ΩA(Y ′) as
A-modules, where Y ′ is an A-module.

(2) Let i ≥ 2 be an integer, and let X be a B-module. If Ωi
B(X) is (A, B)-projective,

then

AΩi+1
B (X) 
 AΩA(A⊗B Ωi

B(X)) 
 AΩA(Ωi
B(X))⊕ AΩA(Q),

where Q is the A-module Ker(µΩi
B(X)).

(3) If P(A, B) is closed under taking A-syzygies, then, for every A-module Y, the
A-module AΩB(Y ) is (A, B)-projective. In particular, if the extension B ⊆ A

is relatively hereditary, then, for any A-module AY, the A-module ΩB(Y ) is
(A, B)-projective.

Proof. (1) Since Y is (A, B)-projective, there is an A-module Y ′ such that A⊗B

Y 
 Y ⊕ Y ′ as A-modules. By Lemma 2.5, we have

AΩB(Y ) 
 AΩA(A⊗B Y ) 
 ΩA(Y )⊕ ΩA(Y ′).

(2) Since Ωi
B(X) is an A-module for i ≥ 2 by Lemma 2.2, it follows that (2) is a

consequence of (1) by taking Y = Ωi
B(X).

(3) By Lemma 2.5, ΩB(Y ) is isomorphic to ΩA(A ⊗B Y ) as A-modules. Since the
latter is (A, B)-projective by assumption and Lemma 2.4(1), we see that ΩB(Y )
is (A, B)-projective. The last statement in (3) follows then from Lemma 2.4(2)
since P(A, B) being closed under kernels of surjective homomorphisms between
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(A, B)-projective modules implies that P(A, B) is closed under taking A-
syzygies.

As a consequence of Corollary 2.7(1), we have the following corollary.

Corollary 2.8. Let A be an Artin algebra and B be a subalgebra of A such that
rad(B) is a left ideal in A. Then, for any (A, B)-projective A-module Y with
proj.dim(BY ) <∞, we have proj.dim(BΩA(Y )) <∞.

Proof. The corollary follows immediately from Corollary 2.7(1) since BΩB(Y ) 

BΩA(Y )⊕ BΩA(Y ′) as B-modules, where Y ′ is an A-module.

Lemma 2.9. Suppose that B ⊆ A is an extension of Artin algebras such that
rad(B) is a left ideal in A.

(1) Let Y be an A-module and n ≥ 1 be an integer or infinity. If AΩi
B(Y ) is (A, B)-

projective for 0 ≤ i ≤ n− 1, then we have an isomorphism of A-modules:

AΩj
B(Y ) 
 AΩj

A(Y )⊕
j⊕

i=1

AΩj−i+1
A (Ti)

for 1 ≤ j ≤ n, where Ti is the A-module Ker(µΩi
B(Y )).

(2) Let BX be a B-module. If there is an integer n ≥ 2 such that AΩj
B(X) is

(A, B)-projective for all j ≥ n, then there is an isomorphism of A-modules:

AΩj+n
B (X) 
 AΩj

A(Ωn
B(X))⊕

j⊕
i=1

AΩj−i+1
A (Ti)

for all j ≥ 1, where Ti are some A-modules.

Proof. Note that (2) follows from (1) if we put Y = Ωn
B(X). So we need only to

prove (1). If 1 ≤ j ≤ n, then AΩj−1
B (Y ) is (A, B)-projective by assumption. Thus

we have

Ωj
B(Y ) = ΩB(Ωj−1

B (Y ))


 ΩA(Ωj−1
B (Y ))⊕ ΩA(Qj) (Corollary 2.7(1))


 ΩA

(
ΩA(Ωj−2

B (Y ))⊕ ΩA(Qj−1)
)⊕ ΩA(Qj)

= Ω2
A(Ωj−2

B (Y ))⊕ Ω2
A(Qj−1)⊕ ΩA(Qj)

...


 Ωj
A(Y )⊕

j⊕
i=1

AΩj−i+1
A (Qi),

where Qi are some A-modules. Thus (1) follows.
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Proof of Theorem 1.1. We first prove Theorem 1.1(1). Let s be the finitistic
dimension of A. Suppose that BX is a B-module such that proj.dim(BX) = m <∞.
We may assume that m ≥ 3. Then Y ′ := Ω2

B(X) is an A-module by Lemma 2.2.
Since we assume that P(A, B) is closed under taking syzygies, we infer that Ωj

B(Y ′)
is (A, B)-projective for all j ≥ 1 by Corollary 2.7(3). Now we set Y := ΩB(Y ′) =
Ω3

B(X). Then AΩj
B(Y ) is (A, B)-projective for all j ≥ 0. By Lemma 2.9(1), we have

0 = AΩm+1
B (X) 
 AΩm−2

A (Y )⊕
m−2⊕
i=1

AΩm−2−i+1
A (Qi)

with Qi certain A-modules. Thus proj.dim(AY ) ≤ m− 3. Let

0→ Pt → · · · → P1 → P0 → Y → 0

be a minimal projective resolution of the A-module Y with t ≤ s. Since P(A, B) is
closed under taking syzygies, we see that Ωi

A(Y ) is (A, B)-projective for all i ≥ 0.
Then the projective dimension of the B-module BΩi

A(Y ) is finite by Corollary 2.8,
and the restriction to B of the projective A-module Pi in the sequence has finite
projective dimension for all i. Thus, by Lemma 2.1, we see that proj.dim(BY ) ≤
t + fin.dim(BA), where fin.dim(BM) is the supremum of projective dimensions of
those B-modules M ′ which are direct summands of BM with proj.dim(BM ′) <

∞. Hence proj.dim(BX) ≤ fin.dim(BA) + s + 3. This means that fin.dim(B) ≤
fin.dim(A)+fin.dim(BA)+3. Note that we do not need the finiteness of fin.dim(A)
in the above arguments.

Now we turn to the proof of Theorem 1.1(2). Let us show the first inequality.
If gl.dim(B) is infinite, then Theorem 1.1(2) is trivially true. So we assume that
gl.dim(B) = m < ∞. Let Y be an A-module. Then the module Ωi

A(Y ) is (A, B)-
projective for i ≥ n since it is the kernel of a morphism f in a long exact sequence
of length n of projective A-modules. Thus, by Lemma 2.9(1), we have the following
isomorphism of A-modules for s ≥ 1:

AΩs
B(Ωn

A(Y )) 
 AΩs
A(Ωn

A(Y ))⊕
s⊕

i=1

AΩs−i+1
A (Ti),

with Ti an A-module for all i. This shows that proj.dim(AΩn
A(Y )) ≤ m and

proj.dim(AY ) ≤ m + n. Thus gl.dim(A) ≤ gl.dim(B) + n.
It remains to show the second inequality in Theorem 1.1(2). Suppose that X is a

B-module. Then Ω2
B(X) is an A-module by Lemma 2.2. Using a change of ring the-

orem for the inclusion map B ↪→ A (see, for example, [20, Theorem 4.3.1, p. 99]), we
infer that proj.dim(BΩ2

B(X)) ≤ proj.dim(AΩ2
B(X)) + proj.dim(BA) ≤ gl.dim(A) +

proj.dim(BA). This implies that proj.dim(BX) ≤ gl.dim(A) + proj.dim(BA) + 2.
Thus gl.dim(B) ≤ gl.dim(A) + proj.dim(BA) + 2. This finishes the proof of
Theorem 1.1.
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The following result, which is a variation of Theorem 1.1(1), is implied by the
proof of Theorem 1.1(1).

Proposition 2.10. Let B be a subalgebra of an Artin algebra A such that rad(B)
is a left ideal in A. Suppose that there is an integer s ≥ 2 such that Ωj

B(X) is
(A, B)-projective for all j ≥ s and all B-modules X with proj.dim(BX) <∞. Then
fin.dim(B) ≤ fin.dim(A) + fin.dim(BA) + s.

Proof. Let X be a B-module with proj.dim(BX) < ∞. Put Y := Ωs
B(X). Then

Ωj
B(Y ) is an A-module for all j ≥ 0. Since Ωj

B(Y ) = Ωj+s
B (X) is (A, B)-projective

for all j ≥ 0 by assumption, we know that AΩj
A(Y ) is (A, B)-projective for all j ≥ 1

by Lemma 2.9(1). Now the proof of Theorem 1.1 works smoothly. So we finally
obtain that proj.dim(BX) ≤ fin.dim(A) + fin.dim(BA) + s and that fin.dim(B) ≤
fin.dim(A) + fin.dim(BA) + s.

Before we start with the proof of Corollary 1.2, let us mention some properties
of semisimple extensions, which may help to understand arguments in our later
proofs, though they are not used in the proofs.

Separable and semisimple extensions have been studied for a long time in both
commutative algebra and non-commutative algebra. The next lemma collects some
simple but interesting properties of semisimple extensions. For further information,
we refer the reader to [8, 13, 15].

Lemma 2.11. (1) Every separable extension is semisimple.

(2) If an extension B ⊆ A of Artin algebras is semisimple, then, for any A-module
X, we have AA ⊗B X 
 AX ⊕ Ker(µX), where µX is the multiplication map
from A⊗B X to X.

(3) Let C ⊆ B ⊆ A be extensions of Artin algebras.

(a) If the extension C ⊆ A is semisimple, then B ⊆ A is semisimple.
(b) If the extensions C ⊆ B and B ⊆ A are semisimple, then C ⊆ A is

semisimple.

Proof of Corollary 1.2. We need the following lemma which shows that one can
get a semisimple extension B ⊆ A if rad(B) = rad(A).

Lemma 2.12 ([9]). Let A be an Artin R-algebra and B be a subalgebra of A with
rad(B) equal to rad(A). Then, for any A-module X, the exact sequence

0→ Ker(µX)→ AA⊗B X
µX→ AX → 0

of A-modules splits, and the A-module Ker(µX) is semisimple, where µX is the
multiplication map.

Proof. For the convenience of the reader, we include here a proof which is shorter
than the one in [9]. By �R we denote the R-length of modules. Let KX = Ker(µX).
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Then we may form the following exact commutative diagram in A-mod:

0 −−−−→ KX −−−−→ AA⊗B X −−−−→ AX −−−−→ 0

β

� � �
topA(KX) α−−−−→ topA(AA⊗B X) −−−−→ topA(X) −−−−→ 0.

Note that BKX 
 B(A/B)⊗B X as B-modules by Lemma 2.3 and that the B-
module (A/B)⊗BX is semisimple. Thus BKX = topB(KX) = BtopA(KX). Here we
use the fact that BtopA(X) = topB(X) if rad(A) = rad(B)A (see [24, Lemma 3.6]).
It follows that �R(KX) = �R(topA(KX)) and KX is a semisimple A-module. Thus
β is an isomorphism. Now we claim that α is injective. In fact, the upper row in the
above diagram splits as B-modules. This means that topB(A⊗B X) 
 topB(X)⊕
topB(KX). Thus BtopA(A ⊗B X) 
 BtopA(Y ) ⊕ BtopA(KX). This implies that
�R(topA(A ⊗B X)) = �R(topA(Y )) + �R(topA(KX)). Hence α is injective. This
yields that, as an induced sequence of a split exact sequence, the upper row in the
above commutative diagram splits. The proof is completed.

Thus Corollary 1.2 follows immediately from Theorem 1.1 together with
Lemma 2.12.

In the following, we consider some applications of our main result. As the first
application of Corollary 1.2, we consider the pullback of two algebras of finite
finitistic dimension, and give a proof of Corollary 1.3.

Proof of Corollary 1.3. By definition, A = {(x1, x2) ∈ A1 ⊕ A2 | f1(x1) =
f2(x2)}. The radical of A1 ⊕ A2 is rad(A1)⊕ rad(A2). Since A0 is semisimple,
rad(Ai) is mapped to zero under fi. This implies that rad(A1)⊕ rad(A2) ⊆ rad(A).
The pullback diagram

A
p1 ��

p2

��

A1

f1

��
A2

f2

�� A0

shows that the projection pi is surjective since each fi is surjective. Thus rad(A)
is mapped to rad(Ai) under pi. This yields that rad(A) is included in rad(A1) ⊕
rad(A2), and thus rad(A) = rad(A1) ⊕ rad(A2). Now Corollary 1.3 follows from
Corollary 1.2.

The next corollary is a consequence of Theorem 1.1.
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Corollary 2.13. Let B be a subalgebra of an Artin algebra A such that rad(B) is
a left ideal in A.

(1) Suppose that P(A, B) is closed under taking A-syzygies. If the global dimension
of A is finite, then the finitistic dimension of B is finite.

(2) Suppose that the extension B ⊆ A is semisimple. If I is an ideal in A such that
fin.dim(A/I) is finite, then fin.dim(B/(B ∩ I)) is finite.

Proof. (1) This follows from Theorem 1.1(1), because gl.dim(A) = fin.dim(A) if
gl.dim(A) is finite. To prove (2), we shall prove the following statement:

(#) If B ⊆ A is a semisimple extension and I is an ideal in A, then the extension
B ⊆ A is semisimple, where A = A/I and B denotes the image of B under the
canonical map from A to A/I.

In fact, the inclusion map from B to A induces an inclusion map from B to
A. Note that rad(B) is a left ideal in A. Let X be an A-module. We may regard
X as an A-module via the canonical map. Thus the map A ⊗B X → AX is a
split map. Now we apply A⊗A − to this split map and get a split homomorphism
A ⊗B X → AX . Here we used the fact that A ⊗A X = AX . Since X is an A-
module with (I ∩ B)X = 0, we have A ⊗B X = A ⊗B X . Thus the multiplication
map A ⊗B X → AX splits. This proves the statement (#). Thus (2) follows from
Theorem 1.1.

Before we deduce further consequences of Theorem 1.1, let us make a few
remarks on semisimple extensions.

Remark. The statement (#) shows that an extension B ⊆ A with rad(B) an ideal
in A is semisimple if and only if the extension is radical-equal, that is, rad(B) =
rad(A). In fact, if I := rad(B) is an ideal in A and the extension is semisimple, then
the induced extension B ⊆ A is semisimple. Since B is a semisimple algebra, every
B-module is projective. This implies that every A-module is projective. Hence A

is semisimple and rad(B) = rad(A). Similarly, if an extension B ⊆ A with rad(B)
a left ideal in A is semisimple, then rad(B)A = rad(A), that is, the inclusion map
is radical-full (see [24]). In general, if an extension B ⊆ A of Artin algebras with
rad(B) contained in rad(A) is semisimple, then Arad(B)A = rad(A).

Since monomial algebras have finite finitistic dimension [12], we have the fol-
lowing result.

Corollary 2.14. Let B be a subalgebra of a finite-dimensional monomial K-algebra
A over a field K such that rad(B) is a left ideal in A. If P(A, B) is closed under
taking A-syzygies, then the finitistic dimension of B is finite.

Note that the algebra B in the above corollary does not have to be monomial.
So the corollary seems not to be obvious. The following simple example shows that
a non-monomial algebra B can be embedded into a monomial algebra A such that
rad(B) is an ideal in A and that P(A, B) is closed under taking A-syzygies.
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Let A be the path algebra given by the quiver

1 2 3 4◦ � ◦ � ◦ � ◦ .
α β γ

We take B to be the subalgebra of A spanned by the primitive idempotent elements
ei with 1 ≤ i ≤ 4 corresponding to the vertices of the quiver, together with the
paths α, γ, αβ, βγ and αβγ. Here, we write the composition of α with β as αβ. Then
the algebra B is not monomial. However, one can check that P(A, B) is closed
under taking A-syzygies. Note that P(A, B) is closed neither under extensions,
nor under kernels of surjective homomorphisms, nor under cokernels of injective
homomorphisms.

As another consequence of Corollary 1.2, we have the following result on the
finitistic dimensions of Hochschild extensions of Artin R-algebras. For an A–A-
bimodule AMA and a Hochschild 2-cocycle α : A ⊗R A → M , we denote by
Hα(A, M) the Hochschild extension of A by M via α. For the precise definition
of Hochschild extensions, one can find in [14] or [18].

Corollary 2.15. Let B be a subalgebra of an Artin R-algebra A such that rad(B) =
rad(A). Suppose that AMA is an A–A-bimodule and α : A⊗RA→M is a Hochschild
2-cocycle. If fin.dim(Hα(A, M)) <∞, then fin.dim(Hα(B, M)) <∞.

Proof. Given a Hochschild 2-cocycle α : A ⊗R A → M , we may get an induced
Hochschild 2-cocycle α′ : B ⊗R B → M by composition of the canonical map
B ⊗R B → A ⊗R A with α, which is denoted by α again by abuse of notation.
Thus the Hochschild extension of B by the B–B-bimodule M via α is defined. The
radical of Hα(B, M) is rad(B) ⊕M , which is also the radical of Hα(A, M). Thus
Corollary 2.15 follows from Corollary 1.2 immediately.

The next corollary deals with the finitistic dimensions of algebras of the form
eBe with e an idempotent element in B. Recall that the representation dimension
of A is defined to be the minimum of the global dimensions of algebras of the form
End(AA⊕D(A)⊕M) with M ∈ A-mod. For further information on representation
dimensions, we refer to [1] (see also [25] as well as the references therein).

Corollary 2.16. Let B be a subalgebra of an Artin algebra A such that rad(B) =
rad(A). Suppose that e is an idempotent element in B such that the representation
dimension of A/AeA is at most 3. If gl.dim(A) ≤ 4, then fin.dim(eBe) <∞.

Proof. Under the above assumptions, we have fin.dim(eAe) < ∞ by [26, Theo-
rem 1.1]. Since rad(eBe) = erad(B)e = erad(A)e = rad(eAe), the corollary follows
from Theorem 1.1 applied to the extension eBe ⊆ eAe.

Now, let us make a few remarks on Theorem 1.1.
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Remark. (1) Theorem 1.1(1) can be reformulated more generally as follows: Let
A0 ⊆ A1 ⊆ · · · ⊆ Am be a finite chain of Artin algebras such that rad(Ai) is
a left ideal in Ai+1 and P(Ai+1, Ai) is closed under taking Ai+1-syzygies for
each i. If fin.dim(Am) is finite, then fin.dim(A0) is finite.

(2) Suppose that B ⊆ A is a radical-equal extension of Artin algebras. Though
Theorem 1.1(2) gives an inequality for global dimensions of A and B, we do
not have a similar inequality for finitistic dimensions. In fact, the difference of
the finitistic dimensions of A and B could be any positive integer. For example,
take an algebra A of global dimension n ≥ 1, which is given by a quiver with
relations, and glue all vertices of the quiver of A together to obtain a subalgebra
B of A with the same radical. In this case, gl.dim(B) =∞, fin.dim(B) = 0 and
fin.dim(A) = n = gl.dim(A).

(3) If an extension B ⊆ A with rad(B) a left ideal in A is semisimple, then
gl.dim(A) ≤ gl.dim(B) by Theorem 1.1. However, this inequality cannot be
improved to equality “gl.dim(A) = gl.dim(B)”. For example, if A is the path
algebra of the quiver ◦ → ◦ → ◦, and if we glue the source vertex with the
sink one in the quiver, then we get a subalgebra B of A with the same radical.
Clearly, gl.dim(A) = 1 	= 2 = gl.dim(B). On the other hand, the upper bound
“gl.dim(A) ≤ gl.dim(B)” is optimal. For instance, if we take A to be the alge-

bra given by the quiver ◦ α→ ◦ β→ ◦ → ◦ with relation αβ = 0, and B to be the
gluing of the sink vertex with the ending vertex of α, then both A and B have
global dimension 2.

(4) In [9] it was shown that under the assumptions of Corollary 1.2 the represen-
tation dimension of B is at most 3 if the representation dimension of A is at
most 2. Thus fin.dim(B) is finite, according to a result of Igusa–Todorov [16].
Hence Corollary 1.2 can also be seen as a generalization of the result in [9].

(5) Recall that a full subcategory of A-mod is called resolving if it contains all
projective modules in A-mod, and is closed under extensions and kernels of
surjective homomorphisms. If AB is projective for an extension B ⊆ A of Artin
R-algebras, then P(A, B) is a resolving subcategory in A-mod if and only if
P(A, B) is closed under extensions (see [17, Proposition 7.6]). In particular,
P(A, B) is closed under kernels of surjective homomorphisms if P(A, B) is
closed under extensions. Another example for P(A, B) to be closed under ker-
nels of surjective homomorphisms between (A, B)-projective modules is that
there are injective B-modules BIi and projective right B-modules Pi such that
A/B 
⊕i Ii ⊗R Pi as B-bimodules. In this case, it was shown in [17, Propo-
sition 7.5(a)] that P(A, B) is resolving.

In general, we have the following result.

Lemma 2.17. Suppose that P(A, B) is closed under extensions. Then P(A, B)
is closed under taking A-syzygies if and only if P(A, B) is closed under kernels of
surjective homomorphisms, namely P(A, B) is resolving.
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Proof. Suppose that P(A, B) is closed under taking A-syzygies. Let f : Y → Z

be a surjective homomorphism in P(A, B). The following pullback diagram

0 0� �
Ω(Z) Ω(Z)� �

0 −−−−→ Ker(f) −−−−→ U −−−−→ P (Z) −−−−→ 0

‖
� �

0 −−−−→ Ker(f) −−−−→ Y −−−−→ Z −−−−→ 0� �
0 0

shows that Ker(f) is a direct summand of U which is in P(A, B) by assumption.
Here P (Z) denotes a projective cover of AZ. Since P(A, B) is closed under direct
summands, Ker(f) ∈P(A, B). Thus P(A, B) is closed under kernels of surjective
homomorphisms.

From the above lemma and Theorem 1.1 we have the following corollary.

Corollary 2.18. Let B ⊆ A be an extension of Artin algebras such that rad(B)
is a left ideal in A and that P(A, B) is closed under extensions. If P(A, B) is
resolving and if fin.dim(A) is finite, then fin.dim(B) is finite.

Note that if AB is projective for an extension B ⊆ A of Artin algebras, then
P(A, B) is closed under taking A-syzygies. In fact, for an A-module X in P(A, B),
we see that X is a direct summand of A ⊗B X , and therefore ΩA(X) is a direct
summand of ΩA(A⊗B X). Since AB is projective, ΩA(A⊗B X) is a direct summand
of A⊗BΩB(X) which lies in P(A, B) by Lemma 2.4(1). Note that P(A, B) is closed
under direct summands. Thus ΩA(X) ∈P(A, B).

Now, we point out a non-trivial example to show the existence of an n-hereditary
extension which is not (n− 1)-hereditary.

Let A be the algebra defined by the quiver

0◦ α0←− ◦ α1←− ◦ α2←− ◦ · · · ◦ αn←− ◦n + 1

with relations: αnαn−1 = · · · = α2α1 = 0. Let B be the subalgebra of A generated
by α0 and the primitive idempotent elements of A corresponding to the vertices of
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the quiver. The Auslander–Reiten quiver of this algebra can be drawn as follows:

0
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0

1

2
1

2

3
2

3

2
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0
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��

�
��

· · ·

· · ·

· · · �
��

�
�� �

��
n − 1

n
n−1

n n + 1

n+1
n

This algebra has 2n+4 non-isomorphic indecomposable modules. If 2 ≤ i ≤ n+1,
then the simple A-module Si corresponding to the vertex i is not (A, B)-projective.
Using the formula HomA(A ⊗B X, I) 
 HomB(X, I) with I an indecomposable
injective A-module, we can check the composition factors of the module A ⊗B X .
Thus the indecomposable A-module 2

1 with the composition factors {S2, S1} is not
(A, B)-projective. All other indecomposable modules are (A, B)-projective. Hence
there are n + 3 indecomposable (A, B)-projective A-modules. The exact sequence

0→ 2→ 3
2
→ · · · → n

n− 1
→ n + 1

n

shows that the extension B ⊆ A is not (n− 1)-hereditary. Clearly, there is only one
exact sequence of length n:

0→ 1
0
→ 2

1
0

→ 3
2
→ · · · → n

n− 1
→ n + 1

n

with the last n terms being (A, B)-projective. Hence the extension B ⊆ A is n-
hereditary, but not (n− 1)-hereditary.

At the end of this section, let us reformulate the finitistic dimension conjecture
for algebras over a perfect field in terms of relative global dimensions.

Let B ⊆ A be an extension of Artin algebras with rad(B) a left ideal in A

and fin.dim(A) < ∞. Then Theorem 1.1 shows that if gl.dim(A, B) = 0, then
fin.dim(B) <∞.

Now we consider the following statement:
(�) Let B ⊆ A be an extension of Artin algebras with rad(B) a left ideal in A

and fin.dim(A) <∞. If gl.dim(A, B) ≤ 1, then fin.dim(B) <∞.
For finite-dimensional algebras over a perfect field, this statement is equivalent

to the finitistic dimension conjecture, because we have the following observations.

Proposition 2.19. Let B ⊆ A be an extension of Artin algebras with rad(B) a left
ideal in A. If this extension B ⊆ A is radical-full, that is, rad(A) = rad(B)A, then
gl.dim(A, B) ≤ 1.

Proof. Let X be an A-module and PA(X) be a projective cover of X . We denote
by KX the kernel of the multiplication map µX : A ⊗B X → X . Then we have
an exact sequence of A-modules: 0 → KX → A ⊗B X → X → 0. Now, we show
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that KX is (A, B)-projective. In fact, we have the following commutative diagram
of A-modules:

0 0� �
KPA(X) −−−−→ KX� �

A⊗B ΩA(X) −−−−→ A⊗B PA(X) −−−−→ A⊗B X −−−−→ 0� � �
0 −−−−→ ΩA(X) −−−−→ PA(X) −−−−→ X −−−−→ 0.� � �

0 0 0

By the snake lemma, the map KPA(X) → KX in the above diagram is a surjective
A-homomorphism. By Lemma 2.1(3) (or the argument in the proof of Lemma 2.5),
one can show that (A/B)⊗B M 
 (A/B)⊗B (M/rad(BM)) for any B-module M .
As rad(A) = rad(B)A, we know that rad(AX) = rad(BX) for any A-module X .
Since KX 
 (A/B)⊗B X as B-modules (see Lemma 2.3), we have

BKPA(X) 
 (A/B)⊗B PA(X) 
 (A/B)⊗B

(
PA(X)/rad(B)PA(X)

)

 (A/B)⊗B (X/rad(B)X) 
 (A/B)⊗B X 
 BKX.

Thus the surjective homomorphism KPA(X) → KX is an isomorphism. Since
KPA(X) is (A, B)-projective, we see that KX is (A, B)-projective. It is easy to
see from the adjunction isomorphism HomA(A ⊗B Y, X) 
 HomB(Y, X) that, for
any A-module of the form A⊗B Y with Y ∈ B-mod, the sequence

0→ HomA(A⊗B Y, KX)→ HomA(A⊗B Y, A⊗B X)→ HomA(A⊗B Y, X)→ 0

is exact. Thus, for any direct summand X ′ of A⊗B Y , the sequence

0→ HomA(X ′, KX)→ HomA(X ′, A⊗B X)→ HomA(X ′, X)→ 0

is exact. Hence the relative projective dimension of X is at most 1, and
gl.dim(A, B) ≤ 1.

The next observation is that every finite-dimensional K-algebra B over a perfect
field K can be embedded into a finite-dimensional K-algebra A such that rad(B) is
a left ideal in A and the extension B ⊆ A is radical-full.

Indeed, since K is perfect, we can write B = S ⊕ rad(B) where S is a maximal
semisimple subalgebra of B. Let B := B/radn−1(B), where n is the nilpotency
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index of rad(B). We define a map

B −→ A :=

(
S 0

rad(B) B

)

by sending b = s + x to (s 0
x b̄) for s ∈ S, x ∈ rad(B), where b̄ stands for the image

of b ∈ B under the canonical surjection from B to B. One can check that A is a
K-algebra and this map is an injective homomorphism of algebras. We identify B

with its image in A. Then rad(B) is a left ideal in A and rad(A) = rad(B)A. Thus
the extension B ⊆ A is radical-full.

The final observation is the following result in [10, Corollary 4.21]: For any Artin
algebras A and B, and for any B-A-bimodule BMA, we can form the triangular
matrix algebra Λ := ( A 0

M B ), and get

fin.dim(Λ) ≤ fin.dim(A) + fin.dim(B) + 1.

Thus, for finite-dimensional algebras over a perfect field, the finitistic dimension
conjecture is equivalent to the above statement (�).

3. Algebras with a Decomposition

In this section, we compare the finitistic dimension of an algebra with that of its
subalgebras, and prove Theorem 1.5. The following definition is motivated by the
dual extensions in [21, 22].

Definition 3.1. Let A be an Artin R-algebra, B, C and S be three subalgebras
of A (with the same identity). We say that A decomposes into a twisted tensor
product of B and C over S, denoted by A = B ∧ C, if

(1) S is a maximal semisimple subalgebra of A (that is, S is a semisimple R-algebra
such that A = S⊕ rad(A) as a direct sum of R-modules) such that B ∩C = S.

(2) The multiplication map ϕ : C ⊗S B 
 CAB is an isomorphism of C–B-
bimodules.

(3) rad(B)rad(C) ⊆ rad(C)rad(B).

From this definition, we see that if A decomposes into a twisted tensor product
of B and C over S, then B = S ⊕ rad(B) and C = S ⊕ rad(C), and the three alge-
bras A, B and C have a common complete set {e1, . . . , et} of primitive orthogonal
idempotent elements. But, in general, neither rad(B) nor rad(C) is a left ideal in A.

In the following, we develop some basic properties of twisted tensor products.

Lemma 3.2. If A = B ∧ C, then

(a) CA and AB are projective.
(b) E(i) ⊗C AB 
 eiBB, where E(i) is the right simple C-module eiC/rad(eiC)

with ei a primitive idempotent element in C.
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Proof. (a) Since S is semisimple, B is projective as an S-module. Then CA 

CC ⊗S B is projective as C-modules. In the same way, we can show that AB is
projective.

(b) E(i)⊗C AB 
 E(i)⊗C C ⊗S BB 
 E(i)⊗S BB 
 eiBB.

Lemma 3.3. If A = B ∧ C, then rad(C)B is an ideal in A, and A/rad(C)B 
 B

as algebras. Moreover, every B-module can be regarded as an A-module via this
isomorphism, and the isomorphism in Lemma 3.2(b) then is an isomorphism of
right A-modules.

The following lemma is a special case of a result in [19, Lemma 1].

Lemma 3.4. Let A be an Artin algebra, I be a nilpotent ideal of A, and X

be an A-module. If TorA
p (A/I, X) = 0 for all p ≥ 1, then proj.dim(AX) =

proj.dim(A/I(X/IX)).

Lemma 3.5. Let A be an Artin algebra and I be a nilpotent ideal of A. Suppose
fin.dim(A/I) = m. If there is a non-negative integer n such that TorA

k (A/I, X) = 0
for all k > n and all A-modules X with proj.dim(AX) < ∞, then fin.dim(A) ≤
m + n.

Proof. Take an A-module X with proj.dim(AX) < ∞. We may assume that
proj.dim(AX) = s > n. Since TorA

k (A/I, X) = 0 for all k > n, we have
TorA

k (A/I, Ωn
A(X)) = 0 for all k > 0. By Lemma 3.4, proj.dim(AΩn

A(X)) =
proj.dim(A/I(Ωn

A(X)/IΩn
A(X))). Thus proj.dim(A/I(Ωn

A(X)/IΩn
A(X))) is finite,

and therefore proj.dim(A/I(Ωn
A(X)/IΩn

A(X))) ≤ m. This means that s − n =
proj.dim(AΩn

A(X)) ≤ m. It follows that fin.dim(A) ≤ m + n.

Lemma 3.6. Suppose A = B ∧ C. If fin.dim(C) = n < ∞, then TorA
p (B, X) = 0

for all p > n and all A-modules X with proj.dim(AX) <∞.

Proof. Let X be an A-module with proj.dim(AX) < ∞. We may assume
proj.dim(AX) = s > n. Take a minimal projective resolution of AX :

0 −→ Ps
fs−→ Ps−1

fs−1−→ · · · f2−→ P1
f1−→ P0

f0−→ X −→ 0.

By restricting to C, the above sequence provides a projective resolution of the
C-module CX by Lemma 3.2(a). So we have proj.dim(CX) ≤ s < ∞. Since
fin.dim(C) = n, we have proj.dim(CX) = k ≤ n. Thus CΩk

A(X) is projective,
and we have a split exact sequence of C-modules:

0 −→ Ps
fs−→ Ps−1

fs−1−→ · · · fk+1−→ Pk
fk−→ Ωk

A(X) −→ 0.

Therefore the following sequence

0→ E(i)⊗C Ps → E(i)⊗C Ps−1 → · · · → E(i)⊗C Pk → E(i)⊗C Ωk
A(X)→ 0

is exact, where E(i) is the right simple C-module eiC/rad(eiC) with ei a primitive
idempotent element in C. As eiB ⊗A Pj 
 E(i) ⊗C A ⊗A Pj 
 E(i) ⊗C Pj for all
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0 ≤ j ≤ s, 1 ≤ i ≤ t by Lemmas 3.2 and 3.3, we have the following commutative
diagram with exact rows

Thus the exactness of the bottom row implies that TorA
p (eiB, X) = 0 for all

p > k. Consequently, TorA
p (B, X) = 0 for all p > n ≥ k.

Proof of Theorem 1.5. By Lemma 3.3, we have an algebra isomorphism
A/〈rad(C)〉 
 B, where 〈rad(C)〉 denotes the ideal of A generated by rad(C).
Thus fin.dim(A/〈rad(C)〉) = fin.dim(B) = m. Note that the algebra isomorphism
is also an isomorphism of right A-modules.

Since rad(B)rad(C) ⊆ rad(C)rad(B), we have

〈rad(C)〉 = Arad(C)A = rad(C) + rad(C)rad(B) = rad(C)B.

This is a nilpotent ideal of A. If X is an A-module with proj.dim(AX) < ∞, then
TorA

p (B, X) = 0 for all p > n by Lemma 3.6, that is, TorA
p (A/〈rad(C)〉, X) = 0 for

all p > n. Consequently, fin.dim(A) ≤ m + n by Lemma 3.5.
To see that m ≤ fin.dim(A), we shall show that if f : P → X is a projective

cover of the B-module X , then 1⊗Bf : A⊗BP → A⊗BX is a projective cover of the
A-module A⊗B X . Once this is proved, it follows easily that m ≤ fin.dim(A) since
proj.dim(AA ⊗B X) = proj.dim(BX) for all BX by the exactness of the functor
A⊗B −.

In fact, since A/rad(C)B 
 B, we may view each B-module as an A-module
via this isomorphism. Thus the multiplication map µ : A⊗B X → X is a surjective
homomorphism of A-modules. Since simple B-modules are also simple A-modules,
the composition (1 ⊗ f)µ : A⊗B P → X is a projective cover of the A-module X .
Thus we have the following exact commutative diagram:

0 −−−−→ Ker(1⊗ f) −−−−→ A⊗B P
1⊗f−−−−→ A⊗B X −−−−→ 0� ‖ µ

�
0 −−−−→ ΩA(X) −−−−→ A⊗B P −−−−→ X −−−−→ 0

The first commutative square shows that Ker(1⊗ f) can be embedded in ΩA(X) ⊆
rad(A⊗B P ). Thus A⊗B P → A⊗B X is a projective cover of A⊗B X . This finishes
the proof.

As a consequence, we apply our result Theorem 1.5 to trivially twisted exten-
sions [22].

Let K be a field. Let B be a K-algebra given by a quiver Γ = (Γ0, Γ1) with rela-
tions {σi | i ∈ I0}, and let C be a K-algebra given by another quiver ∆ = (∆0, ∆1)
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with relations {τj | j ∈ J0}. Assume that S0 is a subset contained in Γ0 ∩∆0. Now
we define a new algebra A, called the trivially twisted extension of B and C at S0,
in the following manner: A is given by the quiver Q = (Q0 := Γ0

.∪ (∆0\S0), Q1 :=
Γ1

.∪ ∆1), with the relations {σi | i ∈ I0} ∪ {τj | j ∈ J0} ∪ {αβ | α ∈ Γ1, β ∈ ∆1},
where αβ means that α comes first and then β follows. Note that if S0 = ∆0 = Γ0,
then we call A the trivially twisted extension of B and C; and if, in addition, C is
the opposite algebra B

op
of B, then A is called the dual extension of B. In this case

we have A 
 A
op

. However, the dual extension of B is usually not isomorphic to
the dual extension of B

op
.

Note that the trivially twisted extension A of B and C at S0 modulo the ideal
generated by {βα | α ∈ Γ1, β ∈ ∆1} in A is the pullback algebra D of B and C

over KS0, along the canonical surjections. Thus we have the following result.

Corollary 3.7. Let A be the trivially twisted extension of two finite-dimensional
algebras B and C at S0, and let D be the above-defined quotient algebra of A. If
fin.dim(B) <∞ and fin.dim(C) <∞, then

(1) fin.dim(A) ≤ fin.dim(B) + fin.dim(C) <∞.

(2) fin.dim(D) <∞.

Proof. By definition, A decomposes into a twisted tensor product of B′ and C′

over a maximal semisimple subalgebra S′, where B′ = B ⊕ K(Γ0\∆0), C′ =
C ⊕ K(∆0\Γ0) and S′ is the semisimple algebra over K generated by the union
of ∆0 and Γ0. In this case, we have rad(B′)rad(C′) = 0. Thus, by Theorem 1.5,
the statement (1) follows. The statement (2) follows from the fact that D can be
embedded in B⊕C such that rad(D) = rad(B)⊕ rad(C). Thus fin.dim(D) <∞ by
Corollary 1.2.

Remark. (1) In general, we cannot get “ fin.dim(A) = fin.dim(B) + fin.dim(C)”
in Theorem 1.5. For example, let B and C be the algebra (over a field) of the
quiver ◦ → ◦. Then the trivially twisted extension of B and C is the Kronecker
algebra defined by the quiver ◦−→−→◦. Clearly, fin.dim(A) = fin.dim(B) =
fin.dim(C) = 1. Thus fin.dim(A) 	= fin.dim(B) + fin.dim(C).

(2) For an Artin algebra A, we have gl.dim(A) = gl.dim(A
op

). Moreover, if A is
the dual extension of an algebra B, then gl.dim(A) = 2 · gl.dim(B) (see [21]
for details). All these, however, are no longer true for finitistic dimension. The
following example shows that even if A is the dual extension of B, we cannot get
fin.dim(A) = fin.dim(B) + fin.dim(B

op
). Indeed, let B be the algebra defined

by the following quiver with relations:

β ◦
1

◦
2��

��
�

α
�

βα = β2 = 0.
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Then fin.dim(B) = 1 and fin.dim(B
op

) = 0. Let A be the dual extension of B.
Since all indecomposable projective A-modules have the same Loewy length,
the algebra A has finitistic dimension zero. Thus fin.dim(A) 	= fin.dim(B) +
fin.dim(B

op
). If A′ is the dual extension of B

op
, then fin.dim(A′) = 1. This

example shows also that the dual extension of B is not isomorphic to the dual
extension of B

op
.

Finally, we give an example to illustrate how our results can be used to estimate
finitistic dimensions of algebras.

Let A be the following algebra (over a field) given by quiver with relations:

Now, we consider the trivially twisted extension A′ of B and C, where B and
C are as follows:

Then we know from Corollary 3.7 that fin.dim(A′) is finite since both fin.dim(B)
and fin.dim(C) are finite. Since A is obtained from A′ by gluing vertices, we have
rad(A) = rad(A′), and therefore A ⊆ A′ is a semisimple extension. Now, by Theo-
rem 1.1, A has finite finitistic dimension.
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[8] S. Elliger, Über Automorphismen und Derivationen von Ringen, J. Reine Angew.
Math. 277 (1975) 155–177.

[9] K. Erdmann, T. Holm, O. Iyama and J. Schröer, Radical embedding and represen-
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