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Derived and stable equivalences of centralizer matrix algebras

Xiaogang Li and Changchang Xi∗

Abstract

The centralizer of a matrix in a full matrix algebra is called a principal centralizer matrix alge-

bra. Characterizations are presented for principal centralizer matrix algebras to be Morita equivalent,

almost ν-stable derived equivalent, derived equivalent, and stably equivalent of Morita type, respec-

tively, in terms of new equivalence relations on square matrices. These equivalence relations on ma-

trices are introduced in a natural way by their elementary divisors. Thus the categorical equivalences

are reduced to questions in linear algebra. Consequently, principal centralizer matrix algebras of per-

mutation matrices are Morita equivalent if and only if they are derived equivalent. Moreover, two

representation-finite, principal centralizer matrix algebras over a perfect field are stably equivalent of

Morita type if and only if they are stably equivalent. Further, derived equivalences between the prin-

cipal centralizer matrix algebras of permutation matrices induce the ones of their p-regular parts and

p-singular parts of the given permutations.
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1 Introduction

Let R be a field and n a natural number. We denote by [n] the set of integers {1, · · · ,n} and by Mn(R) the

full n×n matrix algebra over R with the identity matrix In. For a nonempty set X of Mn(R), the centralizer

matrix algebra Sn(X ,R) of X in Mn(R) is defined by

Sn(X ,R) := {a ∈ Mn(R) | ax = xa, ∀ x ∈ X}.

In case of X = {c}, we write Sn(c,R) for Sn(X ,R). Clearly, Sn(X ,R) = ∩c∈X Sn(c,R). The R-algebra

Sn(c,R) is termed as a principal centralizer matrix algebra.

Clearly, if X consists of invertible matrices, then the centralizer matrix algebras Sn(X ,R) are a special

class of invariant algebras, which can be dated back to the classical invariant theory (see [31]). If X con-

sists of nilpotent matrices over an algebraically closed field R, then all nilpotent matrices in Sn(X ,R) form
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a variety which is of significant interest in semisimple Lie algebras (see [24, 25]). Further, the centralizer

matrix algebras Sn(X ,R) also appear in the representation theory of finite groups. For instance, if R is a

field of characteristic p > 0 and G is a finite group with a Sylow p-subgroup P, then G acts on the set G\P

of left cosets of P in G by left multiplication, and the set R[G\P] of all R-linear combination of the left

cosets of P in G is a permutation module over the group algebra R[G] of G. Moreover, EndR[G](R[G\P])
is isomorphic to a centralizer matrix algebra Sr(G0,R), where r = |G : P| and G0 is a subgroup of permu-

tation matrices in Mr(R). In the literature, EndR[G](R[G\P]) is also called a modular Hecke algebra (see

[2, 7]). Note that G0 is isomorphic to G/Op(G), where Op(G) stands for the largest normal p-subgroup of

G. Alperin suggested to study the endomorphism ring EndR[G](R[G\P]) for attacking the famous Alperin’s

weight conjecture (see [1]).

Centralizer matrix algebras have been studied in various aspects of mathematics, such as invariant

subspaces or orbits in [5], and maximal doubly stochastic matrices in [9]. Recently, in a series of pa-

pers [34, 35, 36], a lot of new structural and homological properties of Sn(c,R) is revealed. For instance,

Sn(c,R) is always a cellular R-algebra if R is an algebraically closed field, and the famous Auslander-

Reiten (or Auslander-Alperin) conjecture on stable equivalences holds true for Sn(c,R) over an arbi-

trary field R. The conjecture states that stably equivalent algebras should have the same number of non-

projective non-isomorphic simple modules. Further, Sn(c,R) is always a Gorenstein algebra and captures

the Auslander algebra of the truncated polynomial algebra R[x]/(xn) for all n ∈ N, which has played an

important role in the classification of parabolic subgroups of classical groups with a finite number of orbits

on the unipotent radical (see [12]).

In this note, we study relations between principal centralizer matrix algebras. Particularly, we are

interested in when they are Morita, derived and stably equivalent of Marita type. These equivalences are

of great importance in the representation theory of algebras and groups [30]. Our question here can be

formulated precisely as follows.

Question: Let R be a field, c ∈ Mn(R) and d ∈ Mm(R). What are the necessary and sufficient condi-

tions for Sn(c,R) and Sm(d,R) to be Morita, derived or stably equivalent (of Morita type)?

The answer to this question is closely related to the minimal polynomials of c and d, and our char-

acterizations of Morita, derived and stable equivalences are given surprisingly in a very elementary way,

namely in terms of elementary divisors of matrices c and d.

To state our main result precisely, we first introduce several equivalence relations on square matrices.

Let R[x] be the polynomial algebra over a field R in one variable x. Given polynomials f (x) and g(x)
of positive degree, we define f (x) ≤ g(x) if f (x) divides g(x), that is, g(x) = f (x)h(x) with h(x) ∈ R[x].

For c ∈ Mn(R), let

Ec ⊂ R[x] denote the set of distinct elementary divisors of c. Here we understand that the elements of

a set are pairwise different, and the ones of a multiset are allowed to be duplicate.

Mc := { f (x) ∈ Ec | f (x) is maximal with respect to the order ≤}, the set of maximal divisors of c.

For f (x) ∈ Mc, we define

Pc( f (x)) := {i≥ 1 | ∃ irreducible polynomial p(x) such that p(x)≤ f (x), p(x)i ∈Ec}, the set of power

indices of f (x) in Ec.

Rc := { f (x) ∈ Mc | f (x) is a reducible polynomial}, the set of reducible maximal divisors of c.
The polynomials in Rc are exactly those f (x) ∈ Mc with Pc( f (x)) 6= {1}.

Let Z>0 be the set of all positive integers and s ∈ Z>0. For a subset T := {m1,m2, · · · ,ms} of Z>0

with m1 > m2 > · · · > ms, we define a multiset HT := {{m1 −m2, · · · ,ms−1 −ms,ms}} and a set JT =:

{m1,m1 −m2, · · · ,m1 −ms}. If T = {m1}, then HT = JT = T .

Now we introduce a few new equivalence relations on square matrices.

Definition 1.1. Two matrices c ∈ Mn(R) and d ∈ Mm(R) are said to be
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(1) M-equivalent, written c
M
∼ d, if there is a bijection π between Mc and Md such that R[x]/( f (x)) ≃

R[x]/(( f (x))π) as algebras and Pc( f (x)) = Pd(( f (x))π) for all f (x) ∈ Mc, where ( f (x))π denotes the

image of f (x) under the map π.

(2) D-equivalent, written c
D
∼ d, if there is a bijection π between Mc and Md such that R[x]/( f (x)) ≃

R[x]/(( f (x))π) as algebras and HPc( f (x)) = HPd(( f (x))π) for all f (x) ∈ Mc.

(3) AD-equivalent, written c
AD
∼ d, if there is a bijection π between Mc and Md such that R[x]/( f (x))≃

R[x]/(( f (x))π) as algebras and Pc( f (x)) = Pd(( f (x))π) or Pc( f (x)) = JPd(( f (x))π) for all f (x) ∈ Mc.

(4) SM-equivalent, written c
SM
∼ d, if there is a bijection π between Rc and Rd such that R[x]/( f (x)) ≃

R[x]/(( f (x))π) as algebras and Pc( f (x)) = Pd(( f (x))π) or Pc( f (x)) = JPd(( f (x))π) for all f (x) ∈ Rc.

Next, we characterize Morita, derived and stable equivalences between principal centralizer matrix

algebras in terms of these equivalence relations on matrices. Our main result reads as follows.

Theorem 1.2. Let R be a field, c ∈ Mn(R) and d ∈ Mm(R). Then

(1) Sn(c,R) and Sm(d,R) are Morita equivalent if and only if c
M
∼ d.

(2) Sn(c,R) and Sm(d,R) are derived equivalent if and only if c
D
∼ d.

(3) Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent if and only if c
AD
∼ d.

(4) Assume that either R is perfect or both c and d are invertible matrices of finite order. Then Sn(c,R)

and Sm(d,R) are stably equivalent of Morita type if and only if c
SM
∼ d.

Thus the existence of a Morita equivalence, an almost ν-stable derived equivalence and a derived

equivalence between principal centralizer matrix algebras can be read off from the elementary divisors of

given matrices directly, and therefore is a problem in linear algebra.

As a consequence, we have the following corollary.

Corollary 1.3. Let R be a field, c ∈ Mn(R) and d ∈ Mm(R).
(1) If c and d are permutation matrices, then Sn(c,R) and Sm(d,R) are Morita equivalent if and only

if they are derived equivalent.

(2) Suppose that R is perfect and that Sn(c,R) and Sm(d,R) are representation-finite. Then Sn(c,R)
and Sm(d,R) are stably equivalent of Morita type if and only if they are stably equivalent.

(3) If Sn(c,R) and Sm(d,R) are derived equivalent or stably equivalent, then they have the same

dominant dimension.

Moreover, for the centralizer matrix algebras of permutation matrices, a derived equivalence between

them gives rise to derived equivalences of smaller centralizer matrix algebras corresponding to p-regular

and p-singular parts of permutations. For details, we refer to Proposition 3.14.

The paper is organized as follows. In Section 2 we fix notation, recall basic definitions and termi-

nologies, and prove a few preliminary lemmas needed in the later proofs. In Section 3 we prove the main

result and its corollary. In Section 4 we present examples to show that even for principal centralizer ma-

trix algebras over a field, the notions of Morita equivalences, almost ν-stable derived equivalences and

derived equivalences are different, though they may coincide in some cases. Finally, we propose some

open questions for further investigation of centralizer matrix algebras. For example, how to characterize

generally the stable equivalences of centralizer matrix algebras?

2 Preliminaries

In this section we recall some basic definitions and terminologies, and prepare a few lemmas for our

proofs.
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2.1 Derived equivalences of algebras

In this paper, R is a field unless stated otherwise. By an algebra we mean a finite-dimensional unitary

associative algebra over R.

Let A be an algebra. By rad(A) and LL(A) we denote the Jacobson radical and the Loewy length of

A, respectively. Let A
op

and Ae stand for the opposite algebra and the enveloping algebra A⊗R Aop of

A, respectively. By a module we always mean a left module unless stated otherwise. We write A-mod

for the category of all finitely generated left A-modules, A-modP for the full subcategory of A-mod

consisting of modules without any nonzero projective summands, and A-proj (respectively, A-inj) for the

full subcategory of A-mod consisting of projective (respectively, injective) A-modules.

For an A-module M, we denote by add(M) the full subcategory of A-mod consisting of all modules

isomorphic to direct summands of direct sums of finitely many copies of M. Let ℓ(M) stand for the

composition length of M, B(M) for the basic module of M, and MP for the submodule of M without any

nonzero projective summand such that M/MP is projective.

The stable module category of A is denoted by A-mod which has the same objects as A-mod does, but

the morphism set HomA(X ,Y ) of objects X and Y is the quotient of HomA(X ,Y )modulo P (X ,Y ), the set of

all homomorphisms that factorize through projective A-modues. If M is a non-projective indecomposable

A-module, then P (M,M)⊆ rad(EndA(M)).
When we say the number of a specific class of A-modules such as projective, injective, simple and

indecomposable A-modules, we always refer to the number of isomorphism classes of them.

For homomorphisms f : X → Y and g : Y → Z in A-mod, we write f g for their composition. This

implies that the image of an element x ∈ X under f is denoted by (x) f . Thus HomA(X ,Y ) is naturally

a left EndA(X)- and right EndA(Y )-bimodule. The composition of functors between categories is written

from right to left, that is, for two functors F : C → D and G : D → Σ, we write G◦F , or simply GF , for

the composition of F with G. The image of an object X ∈ C under F is written as F(X).
Let D : A-mod → A

op
-mod be the usual duality of the algebra A. The Nakayama functor νA :=

DHomA(−,A) ≃ D(A)⊗A − from A-mod to itself restricts to an equivalence: A-proj
∼
→ A-inj. An A-

module M is said to be ν-stably projective if νi
AM is projective for all i ≥ 0. For example, if e2 = e ∈ A

satisfies add(νAAe) = add(Ae), then Ae is ν-stably projective. In this case, e ∈ A is said to be ν-stable. Let

A-stp denote the full subcategory of A-mod consisting of all ν-stably projective A-modules. The Frobenius

part of A is defined (up to Morita equivalence) to be the algebra eAe where e is an idempotent such that

add(Ae) = A-stp (see [15]).

Let D(A) (respectively, Db(A)) be the unbounded (respectively, bounded) derived category of A-mod.

They are R-linear, triangulated categories. Algebras A and B are said to be derived equivalent if their de-

rived categories Db(A) and Db(B) are equivalent as R-linear triangulated categories. An R-linear triangle

equivalence F : Db(A)→ Db(B) is called a derived equivalence between A and B.

A special class of derived equivalences, called almost ν-stable derived equivalences, was introduced

in [13] to establish relations between derived equivalences and stable equivalences of Morita type (see

[13] for more details). One of the interesting properties of almost ν-stable derived equivalences is that

such a derived equivalence between finite-dimensional algebras always induces a stable equivalence of

Morita type (see [13, Theorem 1.1]), and thus preserves global and dominant dimensions of algebras.

Recall that finite-dimensional algebras A and B are stably equivalent of Morita type [6] if there exist left-

right projective (projective as left and right module) bimodules AMB and BNA such that M ⊗B N ≃ A⊕P

as Ae-modules for some projective Ae-module P and N ⊗A M ≃ B⊕Q as Be-modules for some projective

Be-module Q. Clearly, the exact functor N ⊗A− : A-mod → B-mod induces a stable equivalence N ⊗A− :

A-mod → B-mod.

It is known that R and any separable R-algebra are stably equivalent of Morita type. Recall that an

R-algebra A is separable over R if A is a projective module over Ae.
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Algebras A and B are said to be Morita equivalent if A-mod and B-mod are equivalent as R-linear

categories. Clearly, Morita equivalences are almost ν-stable derived equivalences.

To get derived equivalences, the following corollary of [15,Theorem1.1] provides a convenient way.

For further information on constructions of derived equivalences of algebras, we refer to [33].

Let C be an additive category and D a full subcategory of C . For Y ∈ C , a morphism f : M →Y with

M ∈ D is called a right D-approximation of Y if each morphism D → Y with D ∈ D factorizes through

f . Dually, one defines a left D-approximation of an object X in C .

A sequence X
g
→ M

f
→Y in C with M ∈ D is called a D-split sequence [15] if g is both a kernel of f

and a left D-approximation of X , and if f is both a cokernel of g and a right D-approximation of Y .

Lemma 2.1. [15] Let A be an algebra, and let C be a full subcategory of A-mod and M an object in C .

Suppose X → M′ →Y is an add(M)-split sequence in C . Then the endomorphism algebras EndC (M⊕X)
and EndC (M⊕Y ) are derived equivalent via a tilting module.

The next simple observation characterizes Morita equivalences.

Lemma 2.2. Let A be an algebra and M,N ∈ A-mod. Then EndA(M) and EndA(N) are Morita equivalent

if and only if add(M) and add(N) are equivalent as R-linear categories.

Lemma 2.3. [13, Section 3, Remark] Let A be a self-injective algebra and X ∈ A-mod. Then the endo-

morphism algebras EndA(A⊕X) and EndA(A⊕ΩA(X)) are almost ν-stable derived equivalent, where

ΩA(X) stands for the syzygy of X.

Lemma 2.4. [8, Theorem 4.4] Let A and B be symmetric algebras, and let F be an almost ν-stable

derived equivalence between two gendo-symmetric algebras EndA(A⊕M) and EndB(B⊕N), where M

and N are basic non-zero modules without projective summands. Then A and B are (almost ν-stable)

derived equivalent. Furthermore, F induces a stable equivalence F : A-mod → B-mod with F(M) = N.

Lemma 2.5. Let A and B be commutative self-injective algebras, AM and BN be faithful modules over A

and B, respectively. If the endomorphism algebras EndA(M) and EndB(N) are derived equivalent, then

A ≃ Z(EndA(M))≃ Z
(
EndB(N))≃ B, where Z(C) denotes the center of an algebra C.

Proof. For an algebra C and a faithful C-module X , one always has an embedding Z(C) →֒Z(EndC(X)).
Thus A →֒ Z(EndA(M)) since A is commutative. Note that a faithful module over a self-injective al-

gebra is clearly a generator-cogenerator. This implies that MEndA(M) is a right faithful module and the

bimodule AMEndA(M) has the double centralizer property. Thus there is an embedding Z(EndA(M)) →֒
EndEndA(M)op(M) ≃ A. Hence A ≃ Z(EndA(M)). Now, assume that EndA(M) and EndB(N) are derived

equivalent. Then Z
(
EndA(M)

)
≃ Z

(
EndB(N)

)
by [27, Proposition 9.2], and therefore A ≃ Z(EndA(M))≃

Z
(
EndB(N))≃ B. �

2.2 Modules over quotients of polynomial algebras

In this section we remind basic facts on modules over the polynomial algebra R[x]. Throughout this

section, R is a field unless stated otherwise.

Let f (x) be an irreducible polynomial in R[x] and A := R[x]/( f (x)n) for n ∈ N. Then A is a self-

injective algebra by [29, Corollary 4.37]. Further, A is a local, commutative, symmetric, Nakayama

algebra (see, for instance [4, Example, p.127]). Thus A has n indecomposable modules M f (x)(i) :=
R[x]/( f (x)i) for i∈ [n]. For simplicity, we often write M(i) for M f (x)(i) and understand M(0) = 0. Clearly,

HomA(M(i),A)≃ HomR(M(i),R)≃ M(i) as A-modules for all i ∈ [n].
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Let B := R[x]/( f (x)m) for m < n. Then there is a canonical surjective homomorphism π : A → B of R-

algebras, and each B-module can be viewed as an A-module via π. Up to isomorphism, indecomposable A-

modules coming from B-modules are exactly those M(i) with i ∈ [m]. For M,N ∈ B-mod, HomA(M,N) =
HomB(M,N).

For an irreducible polynomial g(x) ∈ R[x] and a positive integers m, if A ≃R[x]/(g(x)m) as R-algebras,

then n = LL(R[x]/( f (x)n)) = LL(R[x]/(g(x)m)) = m, and for t ∈ [n], the indecomposable R[x]/(g(x)n)-
module R[x]/(g(x)t ) is isomorphic to the A-module R[x]/( f (x)t ).

Lemma 2.6. Let a,b,c,d ∈ {0,1, · · · ,n} such that b < a < c, b < d < c and a+d = b+c. If AX ∈ A-mod

has no indecomposable direct summands N with b < ℓ(N)< c and AY := AX ⊕M(b)⊕M(c), then there

is an add(AY )-split sequence 0 → M(a)→ M(b)⊕M(c)→ M(d)→ 0.

Proof. Let g : M(b)→ M(d) and h : M(c)→ M(d) be the canonical injective and surjective homomor-

phisms, respectively. We define v :=
( g

h

)
. Then v : M(b)⊕M(c)→ M(d) is a surjective homomorphism.

Similarly, let p : M(a)→ M(b) and q : M(a)→ M(c) be the canonical surjective and injective homomor-

phisms, respectively, and u := (−p,q). Then u : M(a)→ M(b)⊕M(c) is an injective homomorphism. By

the definition of M(i), we have uv = 0. It follows from a+d = b+ c that the sequence

(⋆) 0 −→ M(a)
u

−→ M(b)⊕M(c)
v

−→ M(d)−→ 0

of A-modules is exact. We shall show that u and v are left and right add(AY )-approximations of M(a)
and M(d), respectively. In fact, we need only to show that v is a right add(AY )-approximation of M(d)
because applying the dual functor HomR(−,R) shows that u is a left add(AY )-approximation of M(a).
To show that v is a right add(AY )-approximation of M(d), it suffices to prove that any homomorphism

h : Z → M(d) with Z an indecomposable summand of Y factorizes through v. By assumption, either

ℓ(Z)≤ b or ℓ(Z)≥ c. Suppose ℓ(Z)≤ b. Then ℓ((Z)h)≤ b = ℓ((M(b))g), and therefore (Z)h ⊂ (M(b))g.
Let s : Z →M(b)⊕M(c) be the homomorphism defined by (z)s :=(((z)h)g−1,0) for z∈ Z.Clearly, h= sv.

Suppose ℓ(Z)≥ c. Then max{a,b,c,d} ≤ ℓ(Z). Let B := R[x]/( f (x)ℓ(Z)). Then B is the quotient of A by

the ideal ( f (x))n−ℓ(Z), Z ≃ M(ℓ(Z)) = R[x]/( f (x)ℓ(Z)) = B as A-modules, and the exact sequence (⋆) can

be viewed as the one of B-modules. So the exactness of HomB(Z,−) implies that h factorizes through v

in B-mod. Since HomA(M,N) = HomB(M,N) for M,N ∈ B-mod, h factorizes through v in A-mod. �

Lemma 2.7. Let n = ∑s
i=1 ℓi with ℓi ∈ Z>0. For σ ∈ Σs and j ∈ [s], define M j := M(∑

j
i=1 ℓi) and

Mσ
j := M(∑

j
i=1 ℓ(i)σ). Then the endomorphism algebras EndA(

⊕s
j=1 M j) and EndA(

⊕s
j=1 Mσ

j ) are de-

rived equivalent.

Proof. The symmetric group Σs is generated by all transpositions (t, t + 1), t ∈ [s− 1]. In particular,

σ ∈ Σs can be written as a product of those transpositions, say σ = ∏k
i=1(ti, ti + 1) for ti ∈ [s− 1]. Set

σk+1 := 1 and σr := ∏k
i=r(ti, ti +1) for all r ∈ [k]. Then (tr, tr +1)σr = σr+1.

It suffices to show that there is a derived equivalence between EndA

(⊕s
j=1 M

σr

j

)
and EndA

(⊕s
j=1 M

σr+1

j

)

for all r ∈ [k]. For any τ ∈ Σs, we define ∑
tr−1
i=1 ℓ(i)τ = 0 if tr = 1. For r ∈ [k], let ar = ℓ(tr+1)σr+1

+

∑
tr−1
i=1 ℓ(i)σr+1

,br =∑
tr−1
i=1 ℓ(i)σr+1

,cr = ∑
tr+1
i=1 ℓ(i)σr+1

,dr = ∑
tr
i=1 ℓ(i)σr+1

and Yr :=
⊕

j 6=tr
M

σr+1

j . Then br < ar <

cr,br < dr < cr,ar+dr = br+cr and Yr contains M
(

∑
tr−1
i=1 ℓ(i)σr+1

)
⊕M

(
∑

tr+1
i=1 ℓ(i)σr+1

)
as a direct summand.

Further, Yr has no indecomposable direct summand Z with br < ℓ(Z)< cr. It then follows from Lemma

2.6 that there is an add(Yr)-split sequence

0 −→ M
(
ℓ(tr+1)σr+1

+
tr−1

∑
i=1

ℓ(i)σr+1

)
−→ M

( tr−1

∑
i=1

ℓ(i)σr+1

)
⊕M

( tr+1

∑
i=1

ℓ(i)σr+1

)
−→ M

( tr

∑
i=1

ℓ(i)σr+1

)
−→ 0.

Clearly,
⊕s

j=1 M
σr

j =Yr⊕M
(
ℓ(tr+1)σr+1

+∑
tr−1
i=1 ℓ(i)σr+1

)
and

⊕s
j=1 M

σr+1

j =Yr⊕M
(

∑
tr
i=1 ℓ(i)σr+1

)
.By Lemma

2.1, EndA(
⊕s

j=1 M
σr

j ) and EndA(
⊕s

j=1 M
σr+1

j ) are derived equivalent. �
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Remark 2.8. The sums “∑
j
i=1 ℓi” and “∑

j
i=1 ℓ(i)σ” appearing in Lemma 2.7 are related to the definition of

D-equivalences of matrices. For s ≥ 2 and a series of integers ms > ms−1 > · · ·> m1 ≥ 1, let ℓ1 := m1 and

ℓi := mi−mi−1 for 2≤ i ≤ s. Then m j = ∑
j
i=1 ℓi for j ∈ [s]. For another series of integers ns > ns−1 > · · ·>

n1 ≥ 1, if {{ms −ms−1, · · · ,m1}} = {{ns − ns−1, · · · ,n1}}, then there exists some σ ∈ Σs such that n j =

∑
j
i=1 ℓ(i)σ for j ∈ [s]. Moreover, if {{ms−ms−1, · · · ,m1}}= {{ns−ns−1, · · · ,n1}} and if there are two irre-

ducible polynomials f (x) and g(x) in R[x] such that R[x]/( f (x)ms )≃ R[x]/(g(x)ns ) as algebras, then it fol-

lows from Lemma 2.7 that EndR[x]/( f (x)ms )(
⊕

k∈[s] R[x]/( f (x)mk )) and EndR[x]/(g(x)ns )(
⊕

k∈[s] R[x]/(g(x)
nk ))

are derived equivalent.

Two algebras Λ and Γ are said to be stably equivalent if their stable module categories Λ-mod and

Γ-mod are equivalent as R-linear categories. Let F be a stable equivalence between Λ and Γ. Then F

induces a one-to-one correspondence between Λ-modP and Γ-modP .
Now, suppose that G : A-mod → A-mod is a stable equivalence. For n ≥ 2, Γn−1 := {M(i) | i ∈

[n− 1]} ⊆ A-modP . Then G induces an action G on Γn−1, namely, for M ∈ Γn−1, G(M) is the unique

module in Γn−1 such that G(M)≃G(M) in A-mod. Clearly, ΩA(M(i)) =M(n− i), where ΩA is the syzygy

operator of A.

Lemma 2.9. Let n ≥ 2. If G is a stable equivalence from A to itself, then the induced action G on Γn−1 is

either ΩA or the identity action.

Proof. If n = 2, the conclusion is clear. Let n ≥ 3. Since A is a local, symmetric and Nakayama

algebra, there are almost split sequences in A-mod:

0 −→ M(1)−→ M(2)−→ M(1)−→ 0

and

0 −→ M( j)−→ M( j−1)⊕M( j+1)−→ M( j)−→ 0

for 2 ≤ j ≤ n− 1. Let Irr(X ,Y ) denote the R-space radA(X ,Y )/rad2
A(X ,Y ). By a general result on stable

equivalences (see [4, Lemma 1.2, p. 336]), we have Irr(X ,Y ) ≃Irr(G(X),G(Y )) as R-spaces for X ,Y ∈
A-modP . It then follows that G(M(1)) ≃ M(1) or G(M(1)) ≃ M(n− 1) = ΩA(M(1)). If G(M(1)) ≃
M(1), we can show that G(M(i)) ≃ M(i) for i ∈ [n− 1]. If G(M(1)) ≃ M(n− 1) = ΩA(M(1)), then we

consider the stable equivalence Ω−1
A G. Since ΩA : A-mod → A-mod is a stable equivalence, it follows

from (Ω−1
A G)(M(1)) ≃ M(1) that (Ω−1

A G)(M(i)) ≃ M(i) for i ∈ [n− 1]. Hence G is the identity map or

equals ΩA. �

A non-projective, non-injective simple module over an Artin algebra is called a node if the middle

term of the almost split sequence starting at the simple module is projective (see [21]).

By [21, Lemma 1], a non-injective simple module S of an Artin algebra is a node if and only if S is

not a composition factor of rad(Q)/soc(Q) for any indecomposable projective module Q. Thus an Artin

algebra has no nodes if and only if every non-projective, non-injective simple module is a composition

factor of rad(P)/soc(P) for some indecomposable projective module P.

Given an Artin algebra Λ, let I be the trace of the direct sum of all non-isomorphic nodes in Λ, and

J be the left annihilator of I in Λ. Martı́nez-Villa showed in [21, Theorem 2.10] that an Artin algebra Λ

with nodes is stably equivalent to the triangular matrix algebra

Λ′ :=

(
Λ/I 0

I Λ/J

)

without nodes. It is shown that Λ and Λ′ have the same numbers of non-isomorphic, non-projective

simples (see [36, Lemma 2.10 (3)]). We often say that Λ′ is obtained from Λ by eliminating nodes.
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Lemma 2.10. Let M be a generator for A-mod.

(1) If n ≥ 2, then every simple EndA(M)-module is neither projective nor injective.

(2) EndA(M) has nodes if and only if n = 2.

Proof. Recall that A := R[x]/( f (x)n) with f (x) an irreducible polynomial in R[x]. Set E := EndA(M).
Since A is a local, symmetric and Nakayama algebra, any indecomposable direct summand of M is iso-

morphic to a submodule of AA. Let eM denote the Hom-functor HomA(M,−) : add(AM) → E-proj and

P := eM(AA). Clearly, eM is an equivalence and P is an indecomposable projective-injective E-module

with soc(P) ≃ top(P) since A is a local symmetric Nakayama algebra. The left exactness of eM implies

that any indecomposable projective E-module is isomorphic to a submodule of P.

(1) Suppose n ≥ 2. Then the indecomposable, projective-injective E-module P is not simple. To

show that every indecomposable projective E-module is not simple, we show that HomE(X ,Y ) 6= 0 for

any indecomposable projective E-modules X and Y . In fact, let X ′ and Y ′ be indecomposable direct

summands of AM such that eM(X ′) = X and eM(Y ′) = Y . Since A is a local algebra, we always have

HomA(X
′,Y ′) 6= 0. Thus

HomE(X ,Y ) = HomE(eM(X ′),eM(Y ′))≃ HomA(X
′,Y ′) 6= 0.

This implies that E has no simple projective modules. Note that the Nakayama functor ν : E-proj → E-inj

is an equivalence. Hence, for any indecomposable injective E-modules U,V , we also have

HomE(U,V )≃ HomE(ν
−1(U),ν−1(V )) 6= 0.

This shows that E has no simple injective modules.

(2) If n = 1, then the algebra A is simple and therefore the algebra E is semisimple. Thus E has no

nodes by definition.

If n = 2, then EndA(M) is Morita equivalent to either A or the Auslander algebra C of A. Note that

C is a Nakayama algebra with 2 indecomposable projective C-modules P1 and P2 = P of lengths 2 and

3, respectively. There is an almost split sequence 0 → top(P2) → P1 → top(P1) → 0, which shows that

EndA(M) has a node.

Finally, we consider n ≥ 3. Let S be a non-projective, non-injective simple E-module, we show

that S is a composition factor of rad(P)/soc(P). Actually, let Q be the projective cover of S with Q =
HomA(M,Y ) for Y ∈ add(M). Then Q is a submodule of P with soc(Q) = soc(P). By (1), Q is not

simple. If Q 6= P, then Q ⊂ rad(P) and 0 6= Q/soc(Q) is a submodule of rad(P)/soc(P). Thus S is a

composition factor of rad(P)/soc(P). If Q = P, then the multiplicity of top(P) in P is at least LL(A)≥ 3,

thus S = top(P) is a composition factor of rad(P)/soc(P). Hence E has no nodes. �

Remark 2.11. If n = 2 and C is the Auslander algebra of A := R[x]/( f (x)2), then C has 2 indecomposable

projective modules P1 and P2, the non-projective indecomposable C-modules are S1 := top(P1), S2 : =

top(P2) and the injective envelope I(S1) of S1. Moreover, there are only two almost split sequences of

C-modules

0 −→ S1 −→ I(S1)−→ S2 −→ 0, 0 −→ S2 −→ P2 −→ I(S1)−→ 0.

By eliminating nodes, A and C are stably equivalent to the corresponding triangular matrix algebras A′

and C′, respectively. The only non-injective, indecomposable projective A′-module is simple, while C′ has

two non-injective, indecomposable projective modules one of which is simple. Note that the Frobenius

parts of both A′ and C′ are zero.

Lemma 2.12. Given M,N ∈ A-mod, the endomorphism algebras EndA(M) and EndA(N) are Morita

equivalent if and only if the basic modules B(M) and B(N) of M and N are isomorphic.
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Proof. Suppose that EndA(M) and EndA(N) are Morita equivalent. Then there is an R-linear equiv-

alence G : add(M) → add(N). For j ∈ [n], EndA(R[x]/( f (x) j) ≃ R[x]/( f (x) j) as algebras. Thus for

indecomposable A-modules X and Y , EndA(X) ≃ EndA(Y ) if and only if X ≃ Y. It then follows from

EndA(C) ≃ EndA(G(C)) for C ∈ add(M) that X ≃ G(X) for any indecomposable module X ∈ add(M).
Therefore B(M)≃ B(N) as A-modules. �

An algebra is said to be representation-finite if it has only finitely many non-isomorphic indecompos-

able modules. Consequently, if add(N)⊆ add(M) and EndA(M) is representation-finite, then EndA(N) is

representation-finite.

If R is perfect or f (x) ≤ xr −1 for some r ∈ Z>0 (for instance, f (x) ≤ md(x) for an invertible matrix

d ∈ Mm(R) of finite order) , then f (x) is a separable polynomial in R[x].

Lemma 2.13. If the polynomial f (x) is separable and K := R[x]/( f (x)), then A can be viewed as a

K-algebra and A ≃ K[x]/(xn) as algebras over K.

Proof. Since f (x) is separable and rad(A)= ( f (x))/( f (x)n), we know that A/rad(A)≃K is a separable

R-algebra. By Wedderburn-Malcev Theorem [32, Theorems 24 and 28], there exists a subalgebra S of A

such that A = S⊕ rad(A) as R-vector spaces. Consequently, S ≃ A/rad(A)≃ K. So A can be viewed as a

K-algebra. Since A is a finite-dimensional, elementary, local K-algebra of representation-finite type, there

is a natural number m such that A ≃ K[x]/(xm). By comparing the K-dimensions of the algebras in this

isomorphism, we get m = n. �

Corollary 2.14. If the polynomial f (x) is separable and g(x) ∈ R[x] is irreducible such that A is stably

equivalent to R[x]/(g(x)m) for an integer m ≥ 2, then A ≃ R[x]/(g(x)m).

Proof. Since stably equivalent algebras of representation-finite type have the same number of non-

projective, indecomposable modules, we get n−1 = m−1, and therefore n = m. Set B := R[x]/(g(x)m).
Let F : A-mod → B-mod be a stable equivalence and S the only simple A-module. Thanks to n = m ≥ 2,

S is not projective and EndA(S)≃ EndA(S). Thus F(S) is indecomposable and

EndA(S)≃ EndA(S)≃ EndB(F(S)) = EndB(F(S))/P (F(S),F(S))

is a division ring. Since P (F(S),F(S))⊂ rad(EndB(F(S))), it follows that P (F(S),F(S))= rad(EndB(F(S))).
This yields the following isomorphism of algebras

R[x]/( f (x)) ≃ A/rad(A)≃ EndA(S)≃ EndB(F(S))≃ B/rad(B)≃ R[x]/(g(x)).

In particular, g(x) is also a separable polynomial. Let K := R[x]/( f (x)). Then Lemma 2.13 implies that

A ≃ K[x]/(xn)≃ B as algebras. �

For c ∈ Mn(R), let R[c] be the unitary subalgebra of Mn(R) generated by c. Then there is a surjec-

tive homomorphism ϕ : R[x] → R[c], sending x to c. Let Rn be the n-dimensional vector space over R

consisting of column vectors. Then Rn is naturally an R[c]-module and can be viewed as an R[x]-module

via ϕ. By the classification of modules over principal ideal domains, there exist irreducible polynomials

f1(x), · · · , fs(x) ∈ R[x] and positive integers ti j such that

(⋆) Rn ≃
s⊕

i=1

li⊕

j=1

R[x]/( fi(x)
ti j )

as R[x]-modules.

Definition 2.15. The polynomials fi(x)
ti j in (⋆) are called the elementary divisors of c (over R).
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Note that Ec is the set of pairwise distinct elementary divisors of c and Mc is the set of maximal

elements of Ec with respect to “≤”. In particular, mc(x) is the product of elementary divisors in Mc and

Ker(ϕ) is exactly the ideal of R[x] generated by mc(x). Let Ac := R[x]/(Ker(ϕ))≃ R[c].

Lemma 2.16. There is a bijection π from Ec to the set of non-isomorphic indecomposable direct sum-

mands of the Ac-module Rn, sending h(x) to the Ac-module R[x]/(h(x)) for h(x) ∈ Ec.

Suppose that R is a field of characteristic p≥ 0. For a positive integer m, there exist unique determined

s,m′ ∈ N such that m = psm′ and p ∤ m′, we define νp(m) := s. Here, we understand νp(m) := 0 if p = 0.

In the following, we denote by ei j the matrix units in Mn(R) and by cσ := ∑s
i=1 ei,(i)σ the permutation

matrix of σ ∈ Σn.

Lemma 2.17. Let R be a field of characteristic p ≥ 0 and σ ∈ Σn a permutation of cycle type (λ1, · · · ,λk).

Then Ecσ = { f (x)pνp(λi) | i ∈ [k], f (x) is irreducible, f (x) ≤ xλi −1}.

Proof. For conjugate permutations in Σn, their corresponding permutation matrices are similar, and

therefore have the same elementary divisors. Thus, without loss of generality, we may assume that σ =
(1, · · · ,λ1)(λ1 + 1, · · · ,λ1 + λ2) · · · (∑

k−1
j=1 λ j + 1, · · · ,n). Then cσ is a diagonal block-matrix of the form

cσ = cσ1
⊕ cσ2

⊕ ·· ·⊕ cσk
, where σi is a λi-cycle in Σλi

for i ∈ [k]. In particular, Ecσ =
⋃

i∈[k] Ecσi
. For

a matrix d ∈ Mm(R), let pd(x) denote the characteristic polynomial of d in R[x]. For i ∈ [k], we write

λi = pνp(λi)λ′
i with p ∤ λ′

i. Then xλ′
i −1 = ∏

hi

j=1 fi j(x) is a product of distinct irreducible polynomials fi j(x)

in R[x]. It follows from pcσi
(x) = xλi −1 = xpνp(λi)λ′

i −1 = (xλ′
i −1)pνp(λi) = ∏

hi

j=1 fi j(x)
pνp(λi) that pcσi

(x) =

mcσi
(x) = xλi −1. Hence Ecσi

= Mcσi
. This implies Ecσ = { f (x)pνp(λi) | i ∈ [k], f (x) is irreducible, f (x) ≤

xλi −1}. �

Now, we prove a result on congruences of matrices that appear as the Cartan matrices of the endo-

morphism rings of modules over polynomial algebras. Two multisets {{x1, · · · ,xs}} and {{y1, · · · ,ys}}
are equal if and only if there exists a σ ∈ Σs such that (y1, · · · ,ys)

σ := (y(1)σ, · · · ,y(s)σ) = (x1, · · · ,xs).

Lemma 2.18. For an integer s≥ 2, let m1 >m2 > · · ·>ms ≥ 1 and n1 > n2 > · · ·> ns ≥ 1 be two series of

integers with m1 = n1. Set X := ∑s
k=1(∑

k
l=1 mk(ekl + elk)−mkekk) ∈ Ms(Z) and Y := ∑s

k=1(∑
k
l=1 nk(ekl +

elk)− nkekk) ∈ Ms(Z). Then X and Y are congruent in Ms(Z) if and only if there is σ ∈ Σs such that

(n1 −n2, · · · ,ns−1 −ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)
σ.

Proof. We define U := I −∑
s−1
t=1 et,t+1,D1 := diag(m1 −m2, · · · ,ms−1 −ms,ms) and D2 := diag(n1 −

n2, · · · ,ns−1 − ns,ns). Then U trXU = D1 and U trYU = D2 Thus X and Y are congruent in Ms(Z) if and

only if D1 and D2 are congruent in Ms(Z). Now, we show that D1 and D2 are congruent in Ms(Z) if and

only if there is an element σ ∈ Σs such that (n1 −n2, · · · ,ns−1 −ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)
σ.

Indeed, if (n1 − n2, · · · ,ns−1 − ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)
σ, then ctr

σ D1cσ = D2. This means

that D1 and D2 are congruent in Ms(Z). Conversely, suppose that D1 and D2 are congruent in Ms(Z).
Then there is an invertible matrix H = (ai j)1≤i, j≤s ∈ Mn(Z) such that HtrD1H = D2. This implies

(∗)
s−1

∑
r=1

(
s

∑
k=1

(a2
kr))(mr −mr+1)+ (

s

∑
k=1

(a2
ks))ms = n1 = m1.

Since H is invertible in Ms(Z), each column of H has a nonzero element, and therefore ∑s
k=1(a

2
kr) ≥

1 for r ∈ [s]. Now it follows from (∗) that ∑s
k=1(a

2
kr) = 1 for all r ∈ [s]. Thus each row and column

of H has only one nonzero entry which is either 1 or −1. This implies that H = εcτ for τ ∈ Σs and

ε a diagonal matrix with the entries in {1,−1}. Hence Htr = H−1. This shows that D1 and D2 are

similar. So {{m1 −m2, · · · ,ms−1 −ms,ms}} = {{n1 − n2, · · · ,ns−1 − ns,ns}} as multisets, and therefore

(n1 −n2, · · · ,ns−1 −ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)
σ for some σ ∈ Σs. �
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2.3 Centralizer matrix algebras of representation-finite type

We first mention a few properties of centralizer matrix algebras.

Lemma 2.19. For c ∈ Mn(R), the followings hold.

(1) There are isomorphisms of R-algebras:

Sn(c,R)≃ Sn(c
tr,R)≃ Sn(c,R)

op

≃ EndAc
(Rn),

where ctr denotes the transpose of the matrix c.

(2) Let pc(x) be the characteristic polynomial of c. Then Sn(c,R) = R[c] if and only if mc(x) = pc(x).

Proof. (1) The first isomorphism follows from the fact that any matrix over a field is similar to its

transpose [17, Theorem 66, p.76], the second isomorphism is given by sending a matrix in Sn(c
tr,R) to its

transpose in Sn(c,R)
op

, and the last isomorphism follows by interpreting c as a linear transformation on

the n-dimensional R-space Rn with respect to a basis.

(2) Note that mc(x) is the product of polynomials in Mc and that pc(x) is the product of all elementary

divisors (counting multiplicity) of c. Thus mc(x) = pc(x) if and only if Mc consists of all elementary

divisors of c. Now, suppose mc(x) = pc(x). Then Mc = Ec and it follows from the decomposition of Rn

in (⋆) that Rn ≃ R[c] as R[c]-modules. Thus Sn(c,R) ≃ EndR[c](R
n)≃ EndR[c](R[c]) ≃ R[c], and therefore

the subalgebra R[c] of Sn(c,R) has the same R-dimension as Sn(c,R) does. Hence R[c] = Sn(c,R).
Suppose Sn(c,R) =R[c]. Then Sn(c,R) =R[c]≃R[x]/(mc(x)). This shows that Sn(c,R) is a symmetric

algebra. Hence Rn is a projective generator for R[c]-mod (see, for example, the argument of the proof of

Lemma 3.5(2)). Since R[c] ≃ R[x]/(mc(x)) ≃ ∏ f (x)∈Mc
R[x]/( f (x)) is a basic algebra, we have Rn ≃

R[c]⊕M for a projective R[c]-module M. Thus R[c] = Sn(c,R) ≃ EndR[c](R
n) ≃ EndR[c](R[c]⊕M). This

implies M = 0, that is, Rn ≃R[c] as R[c]-modules. In particular, deg(mc(x)) = dimR(R[c]) = dimR(R
n)= n.

Then deg(pc(x)) = n = deg(mc(x)). But mc(x) is a divisor of pc(x), and therefore mc(x) = pc(x). �

In general, Sn(c,R) has neither to equal R[c], nor to be representation-finite. Next, we point out a

condition for Sn(c,R) to be representation-finite in terms of elementary divisors.

Lemma 2.20. Suppose R is a perfect field. For c ∈ Mn(R) and f (x) ∈ Mc, let b f (x) := max{3,Pc( f (x))}.

Then Sn(c,R) is representation-finite if and only if Pc( f (x)) ⊆ {1,b f (x)−1,b f (x)} for all f (x) ∈ Mc.

Proof. Since R is perfect, all irreducible factors of mc(x) are separable over R. Clearly, Sn(c,R) is

representation-finite if and only if every block of Sn(c,R) is representation-finite. The blocks of Sn(c,R)
are parameterized by Mc. Let g(x) ∈ R[x] be an irreducible polynomial such that g(x)s ∈ Mc with s ∈ N.

Then bg(x)s = max{3,s}. By Lemmas 2.2, 2.16 and 2.19, the block of Sn(c,R) related to g(x)s is Morita

equivalent to the algebra

E := EndR[x]/(g(x)s)

( ⊕

t∈Pc(g(x)s)

R[x]/(g(x)t )
)
.

Since R is a perfect field, the algebraic closure R of R is a separable extension of R. By [16, Theorem 3.3]
which says that, for a separable extension L/R, a finite-dimensional R-algebra A is representation-finite if
and only if so is the L-algebra L⊗R A. Hence it suffices to consider when R⊗R E is representation-finite.
Since R is perfect, g(x) has only simple roots in R. Let α1, · · · ,αm be the roots of g(x) in R. Then

R⊗R E ≃ EndR⊗RR[x]/(g(x)s)

(
R⊗R

⊕

t∈Pc(g(x)s)

R[x]/(g(x)t)
)
≃ EndR[x]/(∏m

i=1(x−αi)s)

( ⊕

t∈Pc(g(x)s)

R[x]/(
m

∏
i=1

(x−αi)
t)
)
.

Thus each block of R⊗R E is isomorphic to EndR[x]/(xs)

(⊕
t∈Pc(g(x)s) R[x]/(xt )

)
. By [11, Theorem 2.1 (i)]

(see also [10]), the endomorphism algebra EndR[x]/(xs)

(⊕
t∈Pc(g(x)s) R[x]/(xt)

)
is representation-finite if
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and only if either s ≤ 3 and Pc(g(x)
s)⊆ {1,2,3} or s ≥ 4 and Pc(g(x)

s)⊆ {1,s−1,s}. This is equivalent

to saying that Pc(g(x)
s)⊆ {1,bg(x)s −1,bg(x)s}. �

As a corollary of Lemma 2.20, we have the following.

Corollary 2.21. Let R be a perfect field of characteristic p and c ∈ Mn(R) be a permutation matrix such

that the associated permutation of c is of the cycle type λ = (λ1, · · · ,λs). Then Sn(c,R) is representation-

finite if and only if there exists an positive integer t such that νp(λi) ∈ {0, t} for all i ∈ [s].

Proof. By Lemma 2.17, for g(x) ∈ Mc, all the integers in Pc(g(x)) are p-powers and (x−1)pνp (λi) is an

elementary divisor of c for i ∈ [s]. In particular, (x−1)pm

∈ Mc with m = max{νp(λi) | i ∈ [s]}.

Now, suppose that Sn(c,R) is representation-finite. By Lemma 2.20, we deduce that Pc((x− 1)pm

)
does not contain two different p-powers pa > 1 and pb > 1. Since pνp(λi) ∈ Pc((x−1)pm

) for i ∈ [s], there

do not exist λi and λ j with i, j ∈ [s] such that νp(λi) > νp(λ j) ≥ 1, that is, there exists an integer t > 0

such that νp(λi) ∈ {0, t} for all i ∈ [s].
Conversely, suppose that there exists an integer t > 0 such that νp(λi) ∈ {0, t} for all i ∈ [s]. Then, for

each g(x) ∈ Mc, we deduce from Lemma 2.17 that Pc(g(x)) ⊆ {1, pt}. Thus it follows from Lemma 2.20

that Sn(c,R) is representation-finite. �

3 Derived and stable equivalences of centralizer matrix algebras

This section is devoted to proving all results mentioned in the introduction.

Assume that R is a field of characteristic p ≥ 0 unless stated otherwise. For c ∈ Mn(R), let mR,c(x) or

mc(x) be the minimal polynomial of c over R and Ac := R[x]/(mc(x)). Now, let d ∈ Mm(R). We write

mc(x) =
lc

∏
i=1

fi(x)
ni for ni ≥ 1 and md(x) =

ld

∏
j=1

g j(x)
m j for m j ≥ 1,

Ui := R[x]/( fi(x)
ni) for i ∈ [lc] and Vj := R[x]/(g j(x)

m j ) for j ∈ [ld ],

where fi(x) and g j(x) are irreducible polynomials in R[x]. Thus Ui and Vj are local, symmetric Nakayama

R-algebras, and

Ac ≃U1 ×U2 ×·· ·×Ulc and Ad ≃V1 ×V2 ×·· ·×Vld .

Recall that Ac ≃ R[c] and Rn = {(a1,a2, · · · ,an)
tr | ai ∈ R,1 ≤ i ≤ n} is viewed as an Ac-module.

According to these blocks of Ac and Ad, we decompose the Ac-module Rn and the Ad-module Rm as

Rn =
lc⊕

i=1

Mi and Rm =
ld⊕

j=1

N j,

where Mi (respectively, N j) is the sum of indecomposable direct summands of Rn (respectively, Rm)

belonging to the block Ui (respectively, Vj). Then B(Mi)≃
⊕

r∈Pc( fi(x)ni ) R[x]/( fi(x)
r) as Ui-modules and

B(N j) ≃
⊕

s∈Pd(g j(x)
m j ) R[x]/(g j(x)

s) as Vj-modules. Since Rn is a faithful Mn(R)-module, Rn is also a

faithful R[c]-module, and therefore Mi is a faithful Ui-module for i ∈ [lc]. Similarly, N j is a faithful Vj-

module for j ∈ [ld ]. Further, we set

Ai := EndUi
(Mi) and B j := EndV j

(N j)

for i ∈ [lc] and j ∈ [ld ]. Then Ai and B j are indecomposable as algebras for i ∈ [lc] and j ∈ [ld ]. Clearly,

Ai (respectively, B j) is semisimple if and only if ni = 1 (respectively, m j = 1). In this case, Ai ≃
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Mk(R[x]/( fi(x))) for some k ∈N (respectively, B j ≃ Mt(R[x]/(g j(x))) for some t ∈N). By Lemma 2.19,

Sn(c,R)≃
lc

∏
i=1

EndUi
(Mi) =

lc

∏
i=1

Ai and Sm(d,R)≃
ld

∏
j=1

EndV j
(N j) =

ld

∏
i=1

B j.

As the R[c]-module Rn is a generator, we see that the bimodule R[c]R
n
Sn(c,R)

has the double centralizer

property. In particular, EndSn(c,R)(R
n
Sn(c,R)

) = R[c].

3.1 Characterizations of Morita and derived equivalences: Proof of Theorem 1.2

In this section we prove the main result, Theorem 1.2.

Lemma 3.1. (1) Mc = { fi(x)
ni | 1 ≤ i ≤ lc} and |Mc|= lc.

(2) If Ai and B j are derived equivalent, then Ui ≃Vj and ni = m j.

Proof. (1) follows by definition. (2) is a consequence of Lemma 2.5. �

Lemma 3.2. Let c ∈ Mn(R) and d ∈ Mm(R). Then c
M
∼ d if and only if there is an isomorphism ϕ : R[c]≃

R[d] of algebras such that B(Rn)≃ B(Rm), where Rm is viewed as an R[c]-module via ϕ.

Proof. Suppose c
M
∼ d. Then, by definition, there is a bijection π between Mc and Md such that

R[x]/( f (x)) ≃ R[x]/(( f (x))π) as algebras and Pc( f (x)) = Pd(( f (x))π) for all f (x) ∈ Mc. It follows from

R[c]≃ ∏
f (x)∈Mc

R[x]/( f (x)) and R[d]≃ ∏
g(x)∈Md

R[x]/(g(x))

that there is an isomorphism ϕ : R[c]≃R[d]. After reordering the factors, we may assume that ( fi(x)
ni)π =

gi(x)
mi for i ∈ [lc]. Then the condition Pc( f (x)) = Pd(( f (x))π) implies that B(Mi) ≃ B(Ni) for i ∈ [lc].

Here Ni is viewed as an R[c]-module via ϕ. Hence B(Rn)≃B(Rm), where Rm is viewed as an R[c]-module

via ϕ.

Conversely, suppose that there is an isomorphism ϕ : R[c] ≃ R[d] such that B(Rn) ≃ B(Rm) when

Rm is regarded as an R[c]-module via ϕ. We may assume that ϕ restricts to an isomorphism ϕi : Ui ≃ Vi

for i ∈ [lc]. Then the condition B(Rn) ≃ B(Rm) implies that B(Mi) ≃ B(Ni) for i ∈ [lc]. Since B(Mi) ≃⊕
r∈Pc( fi(x)ni ) R[x]/( fi(x)

r) as Ui-modules and B(Ni)≃
⊕

s∈Pd(gi(x)mi ) R[x]/(gi(x)
s) as Vi-modules, we have

Pc( fi(x)
ni) = Pd(gi(x)

mi). Now we define a map π : Mc → Md by fi(x)
ni 7→ gi(x)

mi for i ∈ [lc]. Then π

defines an M-equivalence c
M
∼ d. �

Recall that for an algebra A and an idempotent e∈ A, the Schur functor Ae⊗eAe− : eAe-mod → A-mod

is fully faithful. Following [14, Section 2], we say that a stable equivalence Φ : A-mod→B-mod of Morita

type lifts to a Morita equivalence if there is a Morita equivalence F : A-mod → B-mod such the following

diagram of functors is commutative (up to natural isomorphism)

A-mod B-mod

A-mod B-mod

can.

OO

can.

OO
Φ //

F //

The following is proved in [14, Lemma 3.1, Propositions 3.3 and 3.5, and Remark 4.6].
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Lemma 3.3. Let A and B be two algebras without nonzero semisimple direct summands such that A/rad(A)
and B/rad(B) are separable, and let e and f be ν-stable idempotent in A and B such that eAe and f A f are

their Frobenius parts. Suppose there is a stable equivalence Φ : A-mod → B-mod of Morita type. Then

the followings hold.

(1) If Φ(S) is isomorphic in B-mod to a simple B-module for each simple A-module S, then Φ lifts to

a Morita equivalence.

(2) The functor Φ restricts to a stable equivalence Φ1 : eAe-mod → f B f -mod of Morita type such

that the following diagram is commutative (up to natural isomorphism)

A-mod B-mod

eAe-mod f B f -mod

λ

OO

λ

OO
Φ //

Φ1 //

where λ stands for the corresponding Schur functor. Moreover, if Φ1 lifts to a Morita equivalence, then

so is Φ.

Proof of Theorem 1.2. If Sn(c,R) and Sm(d,R) are Morita (or derived, or almost ν-stable derived)

equivalent, then they have the same number of blocks, that is, lc = ld . Further, we may assume that Ai and

Bi are Morita (or derived, or almost ν-stable derived)) equivalent and that Fi is such an equivalence for

i ∈ [lc]. By Lemma 3.1(2), there is an isomorphism ϕi : Ui ≃Vi of algebras and ni = mi for i ∈ [lc].

(1) Suppose c
M
∼ d. Then it follows from Lemmas 2.2 and 3.2 that Sn(c,R) and Sm(d,R) are Morita

equivalent. Conversely, suppose that Sn(c,R) and Sm(d,R) are Morita equivalent. Then it follows from

Lemma 2.12 that B(Mi) ≃ B(Ni) if Ni is regarded as a Ui-module via ϕi. Let ψc : Ac → R[c] and ψd :

Ad → R[d] be the canonical isomorphisms of algebras. Then ϕ := ψ−1
c (∏

lc
i=1 ϕi)ψd is an isomorphism

between the algebras R[c] and R[d]. Hence B(Rn)≃ B(Rm) where Rm is viewed as an R[c]-module via ϕ.

By Lemma 3.2, we have c
M
∼ d.

(2) Suppose c
D
∼ d. By the definition of D-equivalences, Ac ≃ Ad as algebras and there is a map

π : Mc → Md such that HPc( fi(x)ni ) = HPd(( fi(x)ni )π) for fi(x)
ni ∈ Mc. Without loss of generality, we as-

sume ( fi(x)
ni)π = gi(x)

mi for i ∈ [lc]. Then, for i ∈ [lc], R[x]/( fi(x)
ni) ≃ R[x]/(gi(x)

mi) as algebras and

HPc( fi(x)ni ) = HPd(gi(x)mi ). Recall that B(Mi) ≃
⊕

r∈Pc( fi(x)ni ) R[x]/( fi(x)
r) as Ui-modules and B(Ni) ≃⊕

s∈Pd(gi(x)mi ) R[x]/(gi(x)
s) as Vi-modules. It follows from Remark 2.8 that EndUi

(B(Mi)) and EndVi
(B(Ni))

are derived equivalent. Thanks to Lemma 2.2, Ai and Bi are also derived equivalent. Thus Sn(c,R) and

Sm(d,R) are derived equivalent.

Conversely, suppose that Sn(c,R) and Sm(d,R) are derived equivalent. Let i ∈ [lc]. Then Ai and Bi are

derived equivalent, and there is an isomorphism Ui ≃Vi of algebras such that Ui/rad(Ui)≃Vi/rad(Vi), that

is, R[x]/( fi(x))≃ R[x]/(gi(x)). Let Ki be a splitting field for fi(x)gi(x). Since Ki⊗R Ai ≃ EndKi⊗RUi
(Ki ⊗R

Mi) and Ki ⊗R Bi ≃ EndKi⊗RVi
(Ki ⊗R Ni), the two algebras EndKi⊗RUi

(Ki ⊗R Mi) and EndKi⊗RVi
(Ki ⊗R Ni)

are derived equivalent.

For the irreducible polynomial fi(x), there is a separable irreducible polynomial ui(x) ∈ R[x] and an

integer si ∈ N such that fi(x) = ui(x
psi ). Here, for p = 0, we understand psi = 1. Similarly, there is a

separable irreducible polynomial vi(x) and an integer ti ∈ N such that gi(x) = vi(x
pti ). It follows from

Ki ⊗R

(
R[x]/( fi(x))

)
≃ Ki ⊗R

(
R[x]/(gi(x))

)
that si = ti and that ui(x) and vi(x) have the same number

of roots. Therefore fi(x),gi(x),ui(x) and vi(x) have the same number of distinct roots in Ki. Let wi be

the number of roots of ui(x) in Ki. Suppose that αi1,αi2, · · · ,αiwi
are the roots of fi(x) in Ki and that

βi1,βi2, · · · ,βiwi
are the roots of gi(x) in Ki. Then Ki ⊗R Ui = Ki ⊗R

(
R[x]/( fi(x)

ni)
)
≃ ∏

wi

q=1 Ki[x]/((x−

αiq)
ni·p

si ). Similarly, Ki⊗RVi = Ki⊗R

(
R[x]/(gi(x)

mi)
)
≃ ∏

wi

q=1 Ki[x]/((x−βiq)
mi·p

si ). Now, we shall show
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HPc( fi(x)ni ) = HPd(gi(x)mi ). Indeed, given a Ui-module R[x]/( fi(x)
r), we have the isomorphism

Ki ⊗R

(
R[x]/( fi(x)

r)
)
≃

wi⊕

q=1

Ki[x]/
(
(x−αiq)

rpsi
)

as ∏
wi

q=1 Ki[x]/
(
(x−αiq)

ni psi
)
-modules. Since HomUi

(Mi,−) : add(Mi)→Ai-proj is an equivalence, we see

that |Pc( fi(x)
ni)| equals the number of indecomposable projective Ai-modules, hence equals the number

of simple Ai-modules. Since derived equivalent algebras have the same number of simple modules, we

get |Pc( fi(x)
ni)| = |Pd(gi(x)

ni)|. Put hi = |Pc( fi(x)
ni)|. For hi = 1, we have HPc( fi(x)ni ) = HPd(gi(x)mi ). So

we assume that hi ≥ 2 and Pc( fi(x)
ni) = {ui1, · · · ,uihi

} with ui1 > · · · > uihi
. Since Ai = EndUi

(Mi) is

Morita equivalent to EndUi
(B(Mi)), the algebra Ki ⊗R Ai is Morita equivalent to Ki ⊗R EndUi

(B(Mi)) ≃
EndKi⊗RUi

(Ki ⊗R B(Mi)). As B(Mi)≃
⊕

k∈[hi] R[x]/( fi(x)
uik ) as Ui-modules, we get

Ki ⊗R B(Mi)≃
wi⊕

q=1

⊕

k∈[hi]

Ki[x]/((x−αiq)
uik psi

)

as ∏
wi

q=1 Ki[x]/
(
(x−αiq)

ni p
si
)
-modules. Then a block of Ki ⊗R Ai is Morita equivalent to the algebra

Ec,i := End
Ki[x]/((x−αiq)ni psi )

( ⊕

k∈[hi ]

Ki[x]/((x−αiq)
uik psi

)
)

for some q ∈ [wi]. Similarly,

Ki ⊗R

(
R[x]/(gi(x)

r)
)
≃

wi⊕

q=1

Ki[x]/
(
(x−βiq)

rpsi
)

as ∏
wi

q=1 Ki[x]/
(
(x−βiq)

ni p
si
)
-modules. We write Pd(gi(x)

ni) = {vi1, · · · ,vihi
} with vi1 > · · ·> vihi

. Then a

block of Ki ⊗R Bi is Morita equivalent to an algebra of the form

Ed,i := End
Ki[x]/((x−βiq′ )

ni psi )

( ⊕

k∈[hi]

Ki[x]/((x−βiq′ )
vik psi

)
)

for some q′ ∈ [wi]. Remind that ui1 = ni = mi = vi1, Ec,i ≃ End
Ki[x]/(xni psi )

(⊕k∈[hi]Ki[x]/(x
uik psi )) and Ed,i ≃

End
Ki[x]/(xni psi )

(⊕k∈[hi ]Ki[x]/(x
vik psi )). Thus the Cartan matrices of Ec,i and Ed,i (as Ki-algebras) are the

hi ×hi matrices

Hi := psi

hi

∑
k=1

(
k

∑
l=1

uik(ekl + elk)−uikekk) and Ji := psi

hi

∑
k=1

(
k

∑
l=1

vik(ekl + elk)− vikekk),

respectively. Then there exists an invertible matrix Φi ∈ Mhi
(Z) such that Φtr

i HiΦi = Ji. This follows

from [37, Chapter 6, Proposition 6.8.9] which says that the Cartan matrices of derived equivalent, split

algebras are congruent by an invertible matrix with integral entries. Thanks to Lemma 2.18, we have

HPc( fi(x)ni ) = HPd(gi(x)mi ) as multisets.

Now let π : Mc → Md be the map given by fi(x)
ni 7→ gi(x)

mi for i ∈ [lc]. Then π gives rise to a D-

equivalence c
D
∼ d.

(3) Suppose c
AD
∼ d. Then Ui ≃ Vi for i ∈ [lc] by definition. The condition Pc( fi(x)

ni) = Pd(gi(x)
mi))

or Pc( fi(x)
ni) = JPd(gi(x)mi )) implies that either B(Mi)P ≃ B(Ni)P or B(Mi)P ≃ ΩVi

(B(Ni)P) as Ui-

modules. It then follows from Lemma 2.3 that Ai and Bi are almost ν-stable derived equivalent. Hence

Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent.
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Conversely, suppose that Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent. Thanks to

Lemma 2.4, the almost ν-stable derived equivalence Fi induces a stable equivalence, say Fi, between Ui

and Vi such that Fi(B(Mi)P) ≃ B(Ni)P and mi = ni for i ∈ [lc]. The isomorphism ϕi induces a natural

stable equivalence Φi between Vi and Ui. The composition Φi ◦Fi is then a stable equivalence from Ui

to itself. Now, by Lemma 2.9, we deduce either B(Mi)P ≃ B(Ni)P or B(Mi)P ≃ ΩVi
(B(Ni)P) as Ui-

modules, where Ni is viewed as a Ui-module via ϕi. Note that B(Mi) ≃
⊕

r∈Pc( fi(x)ni ) R[x]/( fi(x)
r) as Ui-

modules and B(N j)≃
⊕

s∈Pd(g j(x)
m j ) R[x]/(g j(x)

s) as Vj-modules. Thus B(Mi)P ≃ B(Ni)P is equivalent

to Pc( fi(x)
ni) = Pd(gi(x)

mi), and B(Mi)P ≃ ΩVi
(B(Ni)P is equivalent to Pc( fi(x)

ni) = JPd(gi(x)mi ) for i ∈
[lc]. Now we define a map π : Mc →Md by fi(x)

ni 7→ gi(x)
mi for i∈ [lc]. Then π defines an AD-equivalence:

c
AD
∼ d.

(4) Assume that either R is perfect or both c and d are invertible matrices of finite order. Then all

irreducible factors of mc(x) and md(x) are separable polynomials over R. Let Ai = EndUi
(Mi) be a block in

Sn(c,R) and eMi
:= HomUi

(Mi,−) : Ui-mod → Ai-mod be an evaluation functor. For any indecomposable

projective Ai-module eMi
(X) with X an indecomposable direct summand of Mi, we have

EndAi

(
top(eMi

(X))
)
≃ EndAi

(eMi
(X))/rad(EndAi

(eMi
(X)))≃ EndUi

(X)/rad(EndUi
(X))≃ R[x]/( fi(x)).

Thus EndAi

(
top(eMi

(X))
)

is separable. This implies that the semisimple quotient Ai/rad(Ai) of Ai is sep-

arable. Hence all the semisimple quotients of blocks of Sn(c,R) and Sm(d,R) are separable. In particular,

all the semisimple blocks of Sn(c,R) and Sm(d,R) are separable.

Now, suppose that c and d are SM-equivalent. By Lemma 2.3 and the proof of (3), there is an almost

ν-stable derived equivalence between the non-semisimple blocks of Sn(c,R) and Sm(d,R) . Further, by

[13, Theorem 1.1], there is a stable equivalence F of Morita type between the non-semisimple blocks

Sn(c,R) and Sm(d,R). Since the semisimple blocks of Sn(c,R) and Sm(d,R) are separable algebras, F can

be extended to a stable equivalence of Morita type between Sn(c,R) and Sm(d,R).
Conversely, suppose that Sn(c,R) and Sm(d,R) are stably equivalent of Morita type, and that the

stable equivalence is given by a functor F . Let A1, · · · ,As be the non-semisimple blocks of Sn(c,R), and

let B1, · · · ,Bs be the non-semisimple blocks of Sm(d,R). By [18, Theorem 2.2] and [19, Lemma 4.8], we

may assume that F induces a stable equivalence Fi of Morita type, between Ai and Bi for 1 ≤ i ≤ s.

To show c
SM
∼ d, we consider the generator Mi for Ui-mod. It follows from νAi

HomUi
(Mi,Ui) ≃

HomUi
(Mi,νUi

Ui) (see [14, Remark 2.9 (2)]) that the Frobenius parts of Ai and Bi are Morita equivalent

to Ui and Vi, respectively. Since Ai/rad(Ai) and Bi/rad(Bi) are separable, it follows from Lemma 3.3(2)

that Fi restricts to a stabe equivalence Gi of Morita type between Ui and Vi. As fi(x) is separable and both

Ai and Bi are non-semisimple, Corollary 2.14 implies that Ui ≃Vi, that is, R[x]/( fi(x)
ni)≃ R[x]/(gi(x)

mi),
and ni = mi.

Now we regard Vi-modules as Ui-modules via this isomorphism. Let Ai :=EndUi
(Ui⊕B(Mi)P), Bi :=

EndVi
(Vi ⊕B(Ni)P) and Ci := EndVi

(Vi ⊕ΩVi
(B(Ni)P )), and let e, f and g be the ν-stable idempotents of

Ai,Bi and Ci, defining their Frobenius parts, respectively. Then Ai,Ai,Bi,Bi and Ci are stably equivalent

of Morita type, and there is the following commutative (up to natural isomorphism) diagram by Lemma

3.3(2):

Ai-mod Bi-mod Ci-mod

eAie-mod f Bi f -mod gCig-mod

λ

OO

λ

OO

λ

OO
Φ //

Φ1 //

Ψ //

Ψ1 //

where λ is the full embedding of stable module categories induced by the corresponding Schur functor

and where Φ and Ψ define stable equivalences of Morita type between Ai and Bi, and between Bi and Ci,

respectively, while Φ1 and Ψ1 are the restrictions of Φ and Ψ, respectively. Note that eAie ≃ Ui ≃ Vi ≃
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f Bi f ≃ gCig. Identifying f Bi f with gCig, we can choose Ψ so that Ψ1 is the syzygy functor on f Bi f -mod

(see the arguments in [20, Proposition 3.3 and Corollary 3.4]). Let S be the simple eAie-module. Then

it follows from Lemma 2.9 that either Φ1(S) or Ψ1 ◦Φ1(S) is simple. By Lemma 3.3(1), either Φ1 or

Ψ1 ◦Φ1 can be lifted to a Morita equivalence, and therefore either Φ or Ψ ◦Φ can be lifted to a Morita

equivalence. It then follows from Lemma 2.12 that either B(Mi)P ≃B(Ni)P or B(Mi)P ≃ΩVi
(B(Ni)P ).

Therefore Pc( fi(x)
ni) = Pd(gi(x)

mi)) or Pc( fi(x)
ni) = JPd(gi(x)mi )). Now we define a map π : Rc → Rd by

fi(x)
ni 7→ gi(x)

mi for fi(x)
ni ∈ Rc. Then π defines an SM-equivalence c

SM
∼ d of matrices. �

Instead of R being a field, we can prove the following for noetherian domains.

Remark 3.4. Suppose that R is a noetherian domain, c ∈ Mn(R) and d ∈ Mm(R). If Sn(c,R) and Sm(d,R)

are derived equivalent, then c
D
∼ d as matrices over the fraction field of R.

Proof. Assume that R is a noetherian domain with K its fractional field. Then it follows from

Sn(c,R) ⊆ Mn(R) that Sn(c,R) is a finitely generated R-algebra. Thus Sn(c,R) is a noetherian algebra,

Sn(c,R)-mod is an abelian category and Db(Sn(c,R)) is well defined.

Regarding K as an R-algebra, we have the isomorphism of K-algebras

ϕ : K ⊗R Mn(R)−→ Mn(K),
s

∑
i=1

ai ⊗bi 7→
s

∑
i=1

(aiIn)bi

where In is the identity matrix in Mn(K). Further, K is a flat R-module and there is the commutative

diagram of K-algebras

K ⊗R Sn(c,R)
µ //

� _

��

Sn(c,K)
� _

��
K ⊗R Mn(R) ∼

ϕ // Mn(K)

where µ is the restriction of ϕ. Remark that Im(µ) belongs to Sn(c,K). Since K is the fractional field of

R, we can find an element 0 6= r ∈ R for each matrix a ∈ Mn(K) such that ra ∈ Mn(R). This implies that µ

is surjective, and therefore an isomorphism. Thus K ⊗R Sn(c,R)≃ Sn(c,K) as K-algebras.

Suppose that the R-algebras Sn(c,R) and Sm(d,R) are derived equivalent. Then there is a tilting

complex T for Sn(c,R) such that EndDb(Sn(c,R))(T )≃ Sm(d,R) as R-algebras. Since K is a flat R-module,

TorR
i (Sn(c,R),K) = 0 and TorR

i (Sm(d,R),K) = 0 for all i ≥ 1. It then follows from [28, Theorem 2.1]

that K ⊗R T is a tilting complex for K ⊗R Sn(c,R) with EndDb(K⊗RSn(c,R))(K ⊗R T ) ≃ K ⊗R Sm(d,R) as

K-algebras. Thus the K-algebras Sn(c,K) and Sm(d,K) are derived equivalent. By Theorem 1.2, there

holds c
D
∼ d. �

3.2 Relations among derived, Morita and stable equivalences: Proof of Corollary 1.3

Let Λ be an Artin algebra and M a generator-cogenerator for Λ-mod. Then the rigidity dimension rd(M)
of M is defined by

rd(M) := sup{n ∈ N | ExtiΛ(M,M) = 0,∀ 1 ≤ i ≤ n}.

If no such n exists, we define rd(M)= 0. The dominant dimension of the algebra Λ, denoted by dom.dim(Λ),
is the maximal t ∈ N (or ∞) such that all the terms I0, I1, · · · , It−1in a minimal injective resolution

0 −→ Λ −→ I0 −→ I1 −→ ·· · −→ It −→ ·· ·

of ΛΛ are projective. By [23, Lemma 3], dom.dim(EndΛ(M)) = rd(M)+2.

The following lemma describes the dominant dimensions of principal centralizer matrix algebras.

17



Lemma 3.5. (1) dom.dim(Ai) ∈ {2,∞}. Particularly, dom.dim(Sn(c,R)) ∈ {2,∞}.

(2) dom.dim(Ai) = ∞ if and only if Ai is a symmetric Nakayama algebra if and only if Pc( fi(x)
ni) is

a singleton set. Thus dom.dim(Sn(c,R)) = ∞ if and only if Sn(c,R) is a symmetric Nakayama algebra if

and only if Pc( fi(x)
ni) is a singleton set for all i ∈ [lc].

Proof. If Λ is an Artin algebra and L ∈ Λ-mod, then it follows from the Auslander-Reiten formula

DExt1Λ(L,L)≃HomΛ(L,τL) that Ext1Λ(L,L) 6= 0 if τL ≃ L, where D is the usual duality of an Artin algebra

and τ := DTr denotes the Auslander-Reiten translation.

Let i ∈ [lc]. For the Ui-module Mi, τ(Mi)P ≃ (Mi)P , and therefore rd(Mi) = ∞ if Mi is projective, and

0, otherwise. Since dom.dim(Ai) = dom.dim(EndUi
(Mi)) = rd(Mi)+ 2, we deduce that dom.dim(Ai) ∈

{2,∞} and that dom.dim(Ai) = ∞ if and only if Mi is projective if and only if Ai is a symmetric Nakayama

algebra if and only if Pc( fi(x)
ni) is a singleton set. Hence dom.dim(Sn(c,R)) ∈ {2,∞}. Moreover,

dom.dim(Sn(c,R)) = ∞ if and only if Sn(c,R) is a symmetric Nakayama algebra if and only if Pc( fi(x)
ni)

is a singleton set for all i ∈ [lc]. �

Let Λ be an Artin algebra. We denote by P(Λ)I the set of all isomorphism classes of projective

Λ-modules without any nonzero injective summands. In [22, Proposition 1.5 and Theorems 1.7 and 2.6],

Martı́nez-Villa proved the following.

Lemma 3.6. [22] Let F : Λ-mod → Λ̄-mod be a stable equivalence of Artin algebras Λ and Λ̄ both with

neither nodes nor semisimple summands.

(1) The functor F provides a bijection F ′ : P(Λ)I → P(Λ̄)I , which preserves simple projective

modules in P(Λ)I .

(2) The functor F induces a stable equivalence between the Frobenius parts of Λ and Λ̄.

(3) Let 0 → X ⊕Q1
f
→ Y ⊕Q2 ⊕P

g
→ Z → 0 be an exact sequence of Λ-modules without any split

exact sequences as its direct summands, where X ,Y,Z ∈Λ-modP , Q1,Q2 ∈P(Λ)I and P is a projective-

injective Λ-module. Then there is a short exact sequence

0 −→ F(X)⊕F ′(Q1)
f ′

−→ F(Y )⊕F ′(Q2)⊕P′ g′

−→ F(Z)−→ 0

in Λ̄-mod such that P′ is projective-injective and that no split exact sequences are its direct summands.

We say that a stable equivalence F : Λ-mod → Λ̄-mod of Artin algebras Λ and Λ̄ preserves non-

semisimple blocks if for non-projective indecomposable modules M,N ∈ Λ-modP , F(M) and F(N) lie in

the same block of Λ̄ if and only if M and N lie in the same block of Λ. In general, a stable equivalence

may not preserve the numbers of non-semisimple blocks of algebras. This can be seen by [36, Example

3.12], for instance.

In the following, we will show that stable equivalences between principal centralizer matrix algebras

over a field do have this property.

As Sn(c,R) ≃ EndR[c](R
n) ≃ ∏

lc
i=1 EndUi

(Mi) = ∏
lc
i=1 Ai, we consider the non-semisimple blocks of

Sn(c,R) and denote by A the direct sum of its non-semisimple blocks. Now, we partition these blocks of

A in the following way such that

(1) SA,≥2 := {A1,A2, · · · ,Aa1
} consists of the blocks Ai with ni ≥ 3 and having at least 2 non-injective,

indecomposable projective modules for 1 ≤ i ≤ a1;

(2) SA,1 := {Aa1+1,Aa1+2, · · · ,Aa2
} consists of the blocks Ai with ni ≥ 3 and having only 1 non-

injective, indecomposable projective module for a1 < i ≤ a2;

(3) SA,0 := {Aa2+1,Aa2+2, · · · ,Aa3
} consists of the blocks Ai with ni ≥ 3 and having no non-injective,

indecomposable projective modules for a2 < i ≤ a3;

(4) SA := {Aa3+1,Aa3+2, · · · ,Aa4
} consists of the blocks Ai with ni = 2 for a3 < i ≤ a4, where 0 ≤ a1 ≤

a2 ≤ a3 ≤ a4 ≤ lc.
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Note that ni is the Loewy length of both Ui and the center of Ai by Lemma 2.5. For an Artin algebra

Λ, we have denoted by Λ′ the triangular matrix algebra obtained from Λ by eliminating all nodes of Λ.

Thus Λ and Λ′ are stably equivalent, but the latter has no nodes.

Let Ã := ∏
a3

i=1 Ai ×∏a3<i≤a4
(Ai)

′. Then we have the following result.

Lemma 3.7. The algebra Ã has neither nodes nor semisimple direct summands. Moreover, there exists a

stable equivalence FA : A-mod → Ã-mod such that FA preserves non-semisimple blocks of algebras and

that the restriction of FA to the block Ai is induced by the identity functor for all i ∈ [a3].

Proof. Recall that Ui = R[x]/( fi(x)
ni) and Ai = EndUi

(Mi). For i ∈ [a3], it follows by Lemma 2.10

that the block Ai has neither nodes nor projective simple modules. For a3 < j ≤ a4, the triangular matrix

algebra (A j)
′ is stably equivalent to A j and has no nodes. Clearly, Ã does not have any semisimple direct

summands. Now it is easy to get a desired stable equivalence FA between A and Ã. �

Let Sm(d,R) be another centralizer matrix algebra and B be the sum of its non-semisimple blocks.

Similarly, we have a partition of blocks for B. This is given by the natural numbers 0 ≤ b1 ≤ b2 ≤ b3 ≤
b4 ≤ ld , namely the partition {B1, · · · ,Bb1

}∪{Bb1+1, · · · ,Bb2
}∪{Bb2+1, · · · ,Bb3

}∪{Bb3+1, · · · ,Bb4
} has

the corresponding properties as the blocks of A.

By Lemma 3.7, B̃ := ∏
b3

j=1 B j ×∏b3< j≤b4
(B j)

′ has neither nodes nor semisimple direct summands,

and there is a stable equivalence FB : B-mod → B̃-mod preserving non-semsimple blocks such that the

restriction of FB to B j is induced by the identity functor for j ∈ [b3].
Now, we assume that there is a stable equivalence F between Sn(c,R) and Sm(d,R). Then F restricts to

a stable equivalence between A and B. Thus H := FB ◦F ◦F−1
A : Ã-mod → B̃-mod is a stable equivalence.

Let J be a quasi-inverse of H . As defined in Lemma 3.6(1), H ′ : P(Ã)I → P(B̃)I and J′ : P(B̃)I →
P(Ã)I are the bijections induced by H and J, respectively.

Lemma 3.8. The correspondence H ′ induces a bijection between SA,≥2 ∪SA,1 and SB,≥2 ∪SB,1 such that

the corresponding blocks have the same number of non-injective, indecomposable projective modules. In

particular, al = bl for 1 ≤ l ≤ 2.

Proof. By the proof in Lemma 2.10, for i ∈ [a2], the block Ai of Ã has a unique projective-injective

indecomposable module, say Pi. We have to discuss the following 2 cases.

(i) H induces a bijection from SA,≥2 to SB,≥2, such that the corresponding blocks have the same number

of non-injective, indecomposable projective modules.

In fact, let Ai ∈ SA,≥2, that is, Ai has at least 2 non-injective, indecomposable projective modules Pi1

and Pi2 which are non-simple by Lemma 2.10. Then there exist 2 indecomposable direct summands Mi1

and Mi2 of the Ui-module Mi such that Pir ≃ HomUi
(Mi,Mir) as Ai-modules for 1 ≤ r ≤ 2. As Ui is a local

Nakayama algebra, we may assume that Mi1 is isomorphic to a proper submodule of Mi2. It then follows

from the left exactness of the Hom-functor HomUi
(Mi,−) that Pi1 is isomorphic to a submodule of Pi2.

Hence there is an exact sequence of Ai-modules

0 −→ Pi1 −→ Pi2 −→ Pi2/Pi1 −→ 0

with Pi2/Pi1 indecomposable. By Lemma 3.6(3), there is an exact sequence of B̃-modules

(∗) 0 −→ H ′(Pi1)−→ H ′(Pi2)⊕P′
1 −→ H(Pi2/Pi1)−→ 0,

with P′
1 being projective-injective, such that this sequence does not contain split exact sequences as its

direct summands. Then Hom
B̃
(H ′(Pi1),H

′(Pi2)) 6= 0, and therefore H ′(Pi1) and H ′(Pi2) lie in the same

block of B̃. Otherwise, the sequence (∗) would contain a split sequence 0 → 0 → H ′(Pi2)
1
→ H ′(Pi2)→ 0
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as its summand. Let O be the block of B̃ to which H ′(Pi1) and H ′(Pi2) belong. Note that a block (B j)
′

of B̃, with b3 < j ≤ b4, has at most 2 non-injective, indecomposable projective modules, one of which

is a simple module by Remark 2.11. It then follows from Lemma 3.6(1) that O 6≃ (B j)
′ as algebras

for b3 < j ≤ b4. Hence O is a block of the form B j for j ∈ [b1] and H ′ sends all the non-injective,

indecomposable projective Ai-modules to the ones belonging to the block B j. Similarly, the non-injective,

indecomposable projective B j-modules are mapped by J′ into modules belonging to the block Ai. Thus

H ′ restricts to a bijection between the set of non-injective, indecomposable projective Ai-modules and

the one of non-injective, indecomposable projective B j-modules. This implies that H induces a bijection

from the set of the blocks in SA,≥2 to the set of blocks in SB,≥2, such that the corresponding blocks have

the same number of non-injective, indecomposable projective modules. Clearly, a1 = b1.

(ii) H induces a bijection between SA,1 and SB,1.

Actually, let Ai ∈ SA,1, that is, Ai has only 1 non-injective, indecomposable projective module, say Qi.

If H ′(Qi) lies in some block (B j)
′ for b3 < j ≤ b4, then, by Remark 2.11, H ′(Qi) has a simple projective

submodule, say P̃j. With a similar argument as in (i), we deduce that Qi and the simple projective module

J′(P̃j) lie in the same block Ai. Note that Qi is not simple and Qi 6≃ J′(P̃j). This implies that the block

Ai contains 2 non-injective, indecomposable projective modules, a contradiction. Thus it follows from (i)

that H ′(Qi) belongs to a block B j ∈ SB,1. So H induces a bijection from the set of blocks in SA,1 to the set

of blocks in SB,1, and therefore a2 −a1 = b2 −b1 and a2 = b2. �

Lemma 3.9. Let Ã1 and B̃1 be the sum of blocks in SA,≥2 ∪ SA,1 and SB,≥2 ∪ SB,1, respectively. Then the

functor H restricts to a stable equivalence between Ã1 and B̃1 preserving non-semisimple blocks.

Proof. By Lemma 3.8, we assume H ′(Ai) = Bi for i ∈ [a2]. Let i ∈ [a2] and Ai be a block in Ã1.

Suppose that M is a non-projective, indecomposable Ai-module. Then H(M) is indecomposable. Further,

we show that H(M) lies in the block Bi of B̃1.

(a) By the proof of Lemma 2.10, any non-injective, indecomposable projective Ai-module is isomor-

phic to a submodule of the unique projective-injective Ai-module Pi. This implies that rad(Pi) is inde-

composable and each non-injective, indecomposable projective Ai-module is isomorphic to a submodule

of rad(Pi). If rad(Pi) is projective, then H ′(rad(Pi)) lies in the block Bi. If rad(Pi) is not projective, then

there exists a non-injective, indecomposable projective Ai-module P and an exact sequence

0 −→ P
ι

−→ rad(Pi)
η

−→ rad(Pi)/P −→ 0

without split direct summands. Applying Lemma 3.6(3) to this sequence, we get an exact sequence of

B̃-modules

0 −→ H ′(P)
ι′

−→ H(rad(Pi))⊕P′
2

η′

−→ H(rad(Pi)/P)−→ 0,

where P′
2 is projective-injective. We show that H(rad(Pi)) lies in the block Bi. Suppose contrarily that

H(rad(Pi)) does not belong to the block Bi. Then Hom
B̃
(H ′(P),H(rad(Pi))) = 0, and therefore Im(ι′) ⊂

P′
2. Thus H(rad(Pi)/P) ≃ (H(rad(Pi))⊕P′

2)/Im(ι′)≃ P′
2/Im(ι′)⊕H(rad(Pi)). This yields that rad(Pi) is

isomorphic to a direct summand of rad(Pi)/P, a contradiction.

(b) Let P(M) be the projective cover of M. Then there is an exact sequence of Ai-modules

0 −→ Ω(M)
f

−→ P(M)
g

−→ M −→ 0,

which has no split direct summands. Write Ω(M) = L1 ⊕L2 for L1 ∈ Ai-modP and L2 ∈ P(Ai)I , and

P(M)=Q⊕(P⊕t
i ) with Q∈P(Ai)I and t ∈N.By Lemma 3.6(3), we get an exact sequence of B̃-modules

(‡) 0 −→ H(L1)⊕H ′(L2)
f ′

−→ H ′(Q)⊕P′
3

g′

−→ H(M)−→ 0,
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such that P′
3 is projective-injective and (‡) has no split direct summands.

(1)Assume Q 6= 0. Then H(M) has to lie in Bi. Otherwise, we would have Hom
B̃
(H ′(Q),H(M)) = 0,

and therefore Im( f ′) = H ′(Q)⊕ (Im( f ′)∩P′
3). Since H ′(Q) is projective, there exists a homomorphism

h′ : H ′(Q)→ H(L1)⊕H ′(L2) such that h′ f ′ is the identity on H ′(Q), and therefore

0 −→ h′(H ′(Q))
f ′

−→ H ′(Q)−→ 0 −→ 0

is a split direct summand of (‡), a contradiction. Hence H(M) belongs to the block Bi.

(2) Assume Q = 0. Then H ′(Q) = 0. Suppose that P′
3 =

⊕l
k=1Ck, where l ≥ 1 and Ck is a sum of

indecomposable direct summands of P′
3 belonging to the same block. We shall show that all indecom-

posable direct summands of P′
3 lie in the same block of B̃, that is, l = 1. Now, suppose contrarily that

l ≥ 2. By (‡), Im( f ′) =
⊕l

k=1 Dk, where Dk is a submodules of Ck for k ∈ [l]. Since H(L1)⊕H ′(L2)
contains no projective-injective direct summands, each Dk is a proper submodules of Ck. Therefore

H(M) ≃ P′
3/Im( f ′) ≃

⊕l
k=1Ck/Dk is decomposable, a contradiction. Thus l = 1 and all indecompos-

able direct summands of P′
3 lie in the same block of B̃. This also imply that P′

3 belongs to the same

block.

Suppose that Ω(M) has a direct summand isomorphic to rad(Pi). Then f ′ in (‡) restricts to an injective

homomorphism from H(rad(Pi)) if rad(Pi) is not projective (or from H ′(rad(Pi)) if rad(Pi) is projective)

to P′
3. In particular, H(rad(Pi)) (or H ′(rad(Pi))) and P′

3 lie in the same block Bi of B̃. Also, H ′(Q) = 0

implies Hom
B̃
(P′

3,H(M)) 6= 0 in (‡). This implies that H(M) and P′
3 lie in the same block Bi.

Suppose that Ω(M) has no direct summands isomorphic to rad(Pi). Recall that P(M) = P⊕t
i under the

assumption Q = 0. We consider the exact sequence of Ai-modules

(♯) 0 −→ Ω(M)
f

−→ (rad(Pi))
⊕t g

−→ rad(M)−→ 0.

Deleting the split direct summands of (♯), we obtain an exact sequence of Ai-modules

0 −→ Ω(M)
f0

−→ (rad(Pi))
⊕r g0

−→ X −→ 0

for some r ≤ t and a submodule X of rad(M). Thanks to Lemma 3.6(3), there is an indecomposable

direct summand L of Ω(M) such that H(L) (or H ′(L)) lies in the block Bi. Otherwise H(X) would

contain a direct summand isomorphic to H((rad(Pi))
⊕r) (or H ′((rad(Pi))

⊕r)) (see the argument in (a)), a

contradiction to that X contains no direct summands isomorphic to (rad(Pi))
⊕r). Now, we see from (‡)

that the modules H(M), P′
3 and H(L) lie in the same block Bi of B̃ or the modules H(M), P′

3 and H ′(L) lie

in the same block Bi of B̃.

Thus we have proved that H(M) lies in the block Bi of B̃1. Similarly, for i ∈ [a2] and a non-projective,

indecomposable Bi-module N, we see that J(N) belongs to the block Ai of Ã1. Hence H induces a stable

equivalence between Ã1 and B̃1, which preserves non-semisimple blocks. �

For an Artin algebra Λ, let ΓΛ denote the Auslander-Reiten quiver of Λ and Γs
Λ the stable Auslander-

Reiten quiver of ΓΛ obtained by removing all projective vertices from ΓΛ. For a local, symmetric

Nakayama algebra Λ0 := R[x]/( f (x)n), Γs
Λ0

is a connected quiver such that there are two arrows between

any two vertices if they are connected by an irreducible map.

Lemma 3.10. Let Ã2 and B̃2 be the sum of blocks in SA,0 ∪SA and SB,0 ∪SB, respectively. The functor H

restricts to a stable equivalence between Ã2 and B̃2, which preserves non-semisimple blocks.

Proof. Given a non-projective, indecomposable Ã2-module Y , the module H(Y ) belongs to a block of

B̃2 by Lemma 3.9. Let Ai ∈ SA,0 be a block, that is, all indecomposable projective Ai-modules are injective.

Then the Ui-module Mi is projective and Ai = EndUi
(Mi) is a symmetric Nakayama algebra which is
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Morita equivalent to Ui = R[x]/( fi(x)
ni). We show that H restricts to a stable equivalence between Ai and

a block in SB,0. Let {Kl | l ∈ [ni −1]} be the set of all (up to isomorphism) non-projective, indecomposable

Ai-modules. Since Γs
Ai

is a connected quiver with two arrows between any two connected vertices, it

follows from [4, Lemma 1.2(d), p. 336] that all modules H(Kl), l ∈ [ni − 1], lie in the same Auslander-

Reiten component of a block W in B̃2. For a block Bk in SB, we consider the node-eliminated block (Bk)
′.

Since Bk and (Bk)
′ are stably equivalent, the quiver Γs

Bk
and Γs

(Bk)′
are isomorphic as translation quivers by

[4, Corollary 1.10, p.342]. According to Remark 2.11, for b3 < k ≤ b4, Γs
Bk

either contains only 1 vertex

or is of the form • → •→ •. This implies that W can not be a block (Bk)
′ in B̃2 with b3 < k ≤ b4. Thus

W is a block in SB,0, say B j. Clearly, B j is a symmetric Nakayama algebra and all H(Kl), l ∈ [ni −1], are

precisely the non-projective, indecomposable B j-modules (up to isomorphism). Similarly, for each block

B j ∈ SB,0, there is a unique block Ai in SA,0 such that J restricts to a stable equivalence between B j and

Ai. In this way, H induces not only a one-to-one correspondence but also a stable equivalence between

the blocks in SA,0 and SB,0.
Let Ai ∈ SA be a block, that is, a3 < i ≤ a4. The quiver Γs

(Ai)′
for a3 < i ≤ a4 (respectively, Γs

(B j)′
for

b3 < j ≤ b4) is connected with either 1 or 3 vertices. Clearly, H restricts to a stable equivalence between

(Ai)
′ and some block (B j)

′ with b3 < j ≤ b4. Hence H induces not only a one-to-one correspondence but

also a stable equivalence between the the blocks in SA and SB. �

Lemma 3.11. Let c ∈ Mn(R) and d ∈ Mm(R). Suppose that there is a stable equivalence F between

Sn(c,R) and Sm(d,R). Then F preserves non-semisimple blocks. Moreover, if Ai and B j are stably equiv-

alent, then ni = m j.

Proof. We keep all notions introduced previously. Suppose that there is a stable equivalence F between

Sn(c,R) and Sm(d,R). Recall that A and B are the sum of non-semisimple blocks of Sn(c,R) and Sm(d,R),
respectively, and FA : A-mod → Ã-mod and FB : B-mod → B̃-mod are stable equivalences.

By Lemmas 3.9 and 3.10, the stable equivalence H = FB ◦F ◦F−1
A : Ã-mod → B̃-mod preserves non-

semisimple blocks. Since FA and FB preserve non-semisimple blocks, we infer that F preserves non-

semisimple blocks.

Suppose that the blocks Ai and B j are stably equivalent. Then Ai is semisimple if and only if B j is

semisimple. In this case, ni = m j = 1. So we may assume that ni ≥ 2 and m j ≥ 2. We first show that ni = 2

if and only if m j = 2. Suppose contrarily that either ni = 2 and m j ≥ 3 or ni ≥ 3 and m j = 2. We only deal

with the situation ni = 2 and m j ≥ 3. The other case can be done similarly. It follows from Lemma 2.10

that Ai has nodes but B j does not have nodes. We replace Ai by a stably equivalent algebra (Ai)
′ without

nodes. By Lemma 3.6(2), the Frobenius parts of (Ai)
′ and B j are stably equivalent, while the Frobenius

parts of (Ai)
′ is zero by Remark 2.11 and the Frobenius parts of B j is Vj by the proof of Theorem 1.2(4).

Thus Vj-mod is zero. This is a contradiction. Thus ni = 2 if and only if m j = 2. Now assume ni ≥ 3 and

m j ≥ 3. With a similar argument, we deduce that the Frobenius parts of Ai and B j are stably equivalent,

that is, Ui and Vj are stably equivalent. In particular, Ui and Vj have the same number of non-projective,

indecomposable modules, that is, ni −1 = m j −1. Hence ni = m j.�

Proof of Corollary 1.3. We keep all notion introduced previously. Let c ∈ Mn(R) and d ∈ Mm(R).
(1) Assume that c and d are permutation matrices and that Sn(c,R) and Sm(d,R) are derived equivalent.

Then Sn(c,R) and Sm(d,R) have the same number of blocks, that is, lc = ld . So we may assume that Ai and

Bi are derived equivalent for i ∈ [lc]. By Lemma 3.1, Ui ≃Vi and ni = mi for i ∈ [lc]. By Theorem 1.2(1), it

suffices to show that Pc( fi(x)
ni) = Pd(gi(x)

mi) for i ∈ [lc]. By Lemma 2.17, the integers in Pc( fi(x)
ni) are

p-powers for i∈ [lc]. Similarly, the integers in Pc(gi(x)
mi) are p-powers for i∈ [lc]. Let ti := |Pc( fi(x)

ni)|=
|Pd(gi(x)

ni)| for i∈ [lc]. If ti = 1, then Pc( fi(x)
ni) = {ni}= {mi}= Pd(gi(x)

mi). For instance, if p = 0, then

ti = 1. Now, we may assume that ti ≥ 2 and p > 0. Let Pc( fi(x)
ni) := {pu1 , · · · , puti} with u1 > · · · > uti

and Pd(gi(x)
mi) := {pv1 , · · · , pvti} with v1 > · · · > vti . By Theorem 1.2(2), we get {pu1 − pu2 , · · · , puti−1 −
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puti , puti} = {pv1 − pv2 , · · · , pvti−1 − pvti , pvti}. For positive integers a > b and s > t, the number pa − pb

is a p-power if and only if p = 2 and a = b+ 1; and the equality pa − pb = ps − pt holds if and only if

a = s and b = t. By considering the cases p = 2 and p ≥ 3 separately, we get uk = vk for all k ∈ [ti]. Thus

Pc( fi(x)
ni) = Pd(gi(x)

mi) for i ∈ [lc]. This implies that A and B are Morita equivalent by Theorem 1.2(1).

(2) Let R be a perfect field. Suppose that Sn(c,R) and Sm(d,R) are representation-finite and stably

equivalent. Let F be a stable equivalence between Sn(c,R) and Sm(d,R). Then it follows from Lemma

2.20 that

Pc( fi(x)
ni)⊆ {1,max{ni,3}−1,max{ni,3}} and Pd(g j(x)

m j )⊆ {1,max{m j,3}−1,max{m j,3}}

for all fi(x)
ni ∈ Mc and g j(x)

m j ∈ Md. Reordering the blocks of Sn(c,R) and Sm(d,R), we may assume

that there are natural numbers a ≤ a′ and b ≤ b′ such that ni ≥ 3 (respectively, m j ≥ 3) if and only if

i ∈ [a] (respectively, j ∈ [b]), and that ni = 2 (respectively, m j = 2) if and only if a < i ≤ a′ (respectively,

b < j ≤ b′). Let A and B be the sums of non-semisimple blocks in Sn(c,R) and Sm(d,R), respectively.

By Lemma 3.11, F preserves non-semisimple blocks. Moreover, if Ai and B j are stably equivalent, then

ni = m j. Thus a = b and a′ = b′. Therefore we may assume that F restricts to a stable equivalence Fi

between Ai and Bi for i ∈ [a′]. In particular, ni = mi for i ∈ [a′].
Let i ∈ [a]. Then ni = mi ≥ 3. By Lemma 2.10(2), Ai and Bi have no nodes. By Lemma 3.6(2),

Fi induces a stable equivalence between the Frobenius parts of Ai and Bi, that is, Ui and Vi are stably

equivalent. Let Ki := Ui/rad(Ui). Since fi(x) is separable by our assumption on the ground field, it

follows from Corollary 2.14 that Ui ≃ Ki[x]/(x
ni )≃Vi as algebras.

According to Lemma 3.6(1), Ai and Bi have the same number of non-injective, indecomposable pro-

jective modules, and hence the same number of indecomposable projective modules. It then follows

from B(Mi) ≃
⊕

r∈Pc( fi(x)ni ) R[x]/( fi(x)
r) as Ui-modules and B(N j) ≃

⊕
s∈Pd(g j(x)

m j ) R[x]/(g j(x)
s) as Vj-

modules that

|Pc( fi(x)
ni)|= |Pd(gi(x)

ni)|.

Thus, due to the inclusions {ni} ⊆ Pc( fi(x)
ni)⊆ {1,ni −1,ni} and {ni} ⊆ Pd(gi(x)

ni)⊆ {1,ni −1,ni}, we

obtain Pc( fi(x)
ni) = Pd(gi(x)

ni) or Pc( fi(x)
ni) = JPd(gi(x)ni ). Hence Ai and Bi are almost ν-stable derived

equivalent by Lemma 2.3 if we identify Ui with Vi, and therefore Ai and Bi are stably equivalent of Morita

type by [13, Theorem 1.1].

Suppose a < i ≤ a′. Then ni = mi = 2. As the argument in the foregoing case i ∈ [a], we can show that

Ui ≃Vi as algebras and that Ai and Bi are Morita equivalent. Thus A and B are stably equivalent of Morita

type. Since R is perfect, the semisimple blocks of Sn(c,R) and Sm(d,R) are separable R-algebras. Hence

Sn(c,R) and Sm(d,R) are stably equivalent of Morita type.

(3) Suppose that Sn(c,R) and Sm(d,R) are derived equivalent. By Lemma 3.5(1), dom.dim(Sn(c,R))∈
{2,∞}. Thus, to prove that Sn(c,R) and Sm(d,R) have the same dominant dimension, we show that

dom.dim(Sn(c,R)) = ∞ if and only if dom.dim(Sm(d,R)) = ∞. However, this follows from Theorem

1.2(2) and Lemma 3.5(2) immediately. Thus Sn(c,R) and Sm(d,R) have the same dominant dimension.

Now, suppose that Sn(c,R) and Sm(d,R) are stably equivalent. Assume dom.dim(Sn(c,R)) = ∞. Then

Sn(c,R) is a symmetric Nakayama algebra by Lemma 3.5(2). By [26, Corollary 1.2], every non-simple

projective Sm(d,R)-module is injective, while the indecomposable projective modules are of the form

HomV j
(N j,R[x]/(g j(x)

s)) for s ∈ Pd(g j(x)
m j ) and j ∈ [ld ]. Thus Pd(g j(x)

m j ) is a singleton set for all

g j(x)
m j ∈ Md, and therefore dom.dim(Sm(d,R)) = ∞ by Lemma 3.5(2). �

For representation-finite, self-injective algebras over an algebraically closed field, Asashiba proved

in [3] that stable equivalences lift to stable equivalences of Morita type. His proof uses classification of

representation-finite, self-injective algebras under derived equivalences. In general, principal centralizer

matrix algebras do not have to be self-injective. As shown in the above, our proof uses a completely

different strategy.
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Corollary 3.12. Let R be a noetherian domain of characteristic p > 0 and σ ∈ Σn be of cycle type λ :=
(λ1, · · · ,λs), and let σ+ be a permutation in Σn+1 of cycle type λ+ := (λ1, · · · ,λs,1). Then the following

are equivalent

(a) Sn(cσ,R) and Sn+1(cσ+ ,R) are derived equivalent.

(b) Sn(cσ,R) and Sn+1(cσ+ ,R) are Morita equivalent.

(c) There is an i ∈ [s] such that p ∤ λi.

Proof. Let K be the fraction field of R and Fp be the prime field of K. Since cσ+ is just the diagonal

block-matrix diag(cσ,1), we have Ecσ+
= Ecσ ∪{x− 1} when cσ and cσ+ are viewed as matrices over

either K or Fp. Note that all λi are exactly the orbit lengths of 〈σ〉 on [n].
(a) ⇒ (c) Suppose Sn(cσ,R) and Sn+1(cσ+ ,R) are derived equivalent. Then it follows from Remark

3.4 that Sn(cσ,K) and Sn+1(cσ+ ,K) are derived equivalent, and hence Morita equivalent by Corollary 1.3.

Further, by Lemma 2.17, p ∤ λi for some number i.

(c)⇒ (b) Assume (c). Then it follows from Lemma 2.17 that x−1 ∈ Ecσ . By Theorem 1.2, Sn(cσ,Fp)
and Sn+1(cσ+ ,Fp) are Morita equivalent. With an argument similar to the one in Remark 3.4, we obtain

the isomorphisms of R-algebras

R⊗Fp
Sn(cσ,Fp)≃ Sn(cσ,R) and R⊗Fp

Sm(cσ+ ,Fp)≃ Sm(cσ+ ,R).

Hence Sn(cσ,R) and Sn+1(cσ+ ,R) are Morita equivalent. �

Finally, we consider the case of nilpotent matrices. Let c ∈ Mn(R) be a nilpotent matrix. Then

the Jordan canonical form c0 of c is unique up to the ordering of its Jordan blocks. Further, c0 has

a Jordan block of size t if and only if rank(ct+1)+ rank(ct−1)− 2rank(ct) > 0. We set Ic := {t ≥ 1 |
c0 has a Jordan block of size t}. Note that Mc consists of only one polynomial of the form xr with r

being the maximal number in Ic. Thus Ic = Pc(x
r).

Corollary 3.13. Let c ∈ Mn(R) be a nilpotent matrix and d ∈ Mm(R). Then Sn(c,R) and Sm(d,R) are

derived equivalent if and only if d = λIm+b with λ ∈R and b being a nilpotent matrix such that HIb
=HIc

.

Proof. Suppose d = λIm +b with λ ∈ R and b ∈ Mm(R) a nilpotent matrix, such that HIb
= HIc

. Then

Sm(d,R) = Sm(b,R). Let xs be the unique polynomial in Mb. Clearly, the assumption HIc
= HIb

implies

HPc(xr) = HPb(xs). It then follows from Theorem 1.2(2) that Sn(c,R) and Sm(b,R) are derived equivalent.

Conversely, suppose that Sn(c,R) and Sm(d,R) are derived equivalent. Then it follows from Theorem

1.2(2) that Md consists of only one polynomial, say f (x)s with an irreducible polynomial f (x) ∈ R[x] and

s ∈ N, and that R[x]/(xr) ≃ R[x]/( f (x)s) as algebras. Thus r = s and f (x) = x−λ for some λ ∈ R. Set

b := λIm − d. Then mb(x) = xs, that is, b is a nilpotent matrix. Clearly, Pd( f (x)s) = Pb(x
s). Therefore

HPc(xr) = HPd( f (x)s) = HPb(xs). Hence HIc
= HIb

. �

3.3 Restrictions of derived equivalences

In this section we investigate the relation between a derived equivalence of centralizer algebras of permu-

tation matrices and the one of their p-parts.

Let σ = σ1 · · ·σs ∈ Σn be the product of disjoint cycle-permutations σi of cycle type λ = (λ1, · · · ,λs)
with λi ≥ 1 for 1 ≤ i ≤ s. For a prime number p > 0, a cycle σi is said to be p-regular if p ∤ λi, and

p-singular if p | λi. If p = 0, all cycles are p-regular. Let r(σ) (respectively, s(σ)) be the product of the

p-regular (respectively, p-singular) cycles of σ. Now, we consider r(σ) and s(σ) as elements in Σn.

Recall that νp(n) denotes the largest non-negative integer such that pνp(n) divides n.

Proposition 3.14. Let R be a field of characteristic p ≥ 0, σ ∈ Σn and τ ∈ Σm. If Sn(cσ,R) and Sm(cτ,R)
are derived equivalent, then
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(1) Sn(cr(σ),R) and Sm(cr(τ),R) are derived equivalent, and

(2) Sn(cs(σ),R) and Sm(cs(τ),R) are derived equivalent.

Proof. By Theorem 1.2(1), we show the following: If cσ
D
∼ cτ, then cr(σ)

D
∼ cr(τ) and cs(σ)

D
∼ cs(τ).

Indeed, let λ = (λ1, · · · ,λk) be the cycle type of σ. For i ∈ [k] and an irreducible factor f (x) of

xλi − 1, we define q f (x) := max{νp(λ j) | j ∈ [k], f (x) ≤ xλ j − 1}. Then it follows from Lemma 2.17 that

Ecσ = { f (x)pνp (λi) | i ∈ [k], f (x) is irreducible and f (x)≤ xλi −1} and

Mcσ = { f (x)p
q f (x)

| i ∈ [k], f (x) is irreducible and f (x)≤ xλi −1}.

This shows that Mcr(σ)
= { f (x) | f (x)∈Ecσ is irreducible} and Mcs(σ)

= {g(x) | g(x)∈Mcσ is reducible }.

Let a denote the order of r(σ). Then it follows from the definition of r(σ) that p ∤ a and therefore

mr(σ)(x)≤ xa −1 is a product of distinct irreducible polynomials. Thus Ecr(σ)
= Mcr(σ)

, consisting only of

some irreducible polynomials. By the definition of s(σ), we see that Ecσ = (Ecr(σ)
\{x− 1})∪Ecs(σ)

and

that polynomials in Ecs(σ)
\{x−1} are reducible. Hence

Ecs(σ)
=

{
{u(x) ∈ Ecσ | u(x) is reducible in R[x]} if r(σ) = 1,

{u(x) ∈ Ecσ | u(x) is reducible in R[x]}∪{x−1} if r(σ) 6= 1.

Suppose cσ
D
∼ cτ . Then there is a bijection π : Mcσ → Mcτ such that R[x]/(h(x)) ≃ R[x]/((h(x)π) as

algebras and Pcσ(h(x)) = Pcτ((h(x))π) for h(x) ∈ Mcσ . For irreducible polynomials w(x),z(x) ∈ R[x], if

R[x]/(w(x)a) ≃ R[x]/(z(x)b) as algebras, then a = b and R[x]/(w(x)e) ≃ R[x]/(z(x)e) as algebras for all

e ≤ a. Thus we may extend π to a bijection between Ecσ and Ecτ such that R[x]/(h(x)) ≃ R[x]/((h(x)π) as

algebras for h(x) ∈ Ecσ . Since Ecσ = (Ecs(σ)
\{x−1})∪̇Ecr(σ)

, the restriction of π on Mcr(σ)
(respectively,

Mcs(σ)
) maps onto Mcr(τ)

(respectively, Mcs(τ)
). For v(x)∈Mcr(σ)

, there holds Pcr(σ)
(v(x)) = Pcr(τ)

((v(x))π) =
{1}. Thus cr(σ) and cr(τ) are D-equivalent.

Particularly, r(σ) = 1 if and only if r(τ) = 1. This yields that x− 1 ∈ Ecs(σ)
if and only if x− 1 ∈

Ecs(τ)
. Let a and b be nonnegative integers such that (x− 1)pa

∈ Mcσ and (x− 1)pb

∈ Mcτ are the only

polynomials divisible by x− 1, and that ((x− 1)pa

)π = j(x) and ((x− 1)pb

)π−1 = k(x). Then it follows

from R[x]/(h(x)) ≃ R[x]/((h(x))π) for h(x) ∈ Mcσ that j(x) = (x+u)pa

and k(x) = (x+ v)pb

for u,v ∈ R.

Since Pcσ(k(x)) ⊆ Pcσ((x−1)pa

) and Pcτ( j(x)) ⊆ Pcτ((x−1)pb

), we obtain

Pcσ(k(x)) = Pcσ((x−1)pa

) = Pcτ( j(x)) = Pcτ((x−1)pb

).

Hence a = b. We may assume that π maps (x−1)pa

in Mcσ to (x−1)pb

in Mcτ . By the above calculations

of Mcs(σ)
and Ecs(σ)

, we get Pcs(σ)
(h(x)) = Pcσ(h(x)) \ {1} for h(x) ∈ Mcs(σ)

with h(x) 6= (x− 1)pa

. For

(x − 1)pa

in Mcσ , we have Pcσ((x − 1)pa

) = Pcs(σ)
((x − 1)pa

). Thus the matrices cs(σ) and cs(τ) are D-

equivalent. �

For a counterexample to the converse of Proposition 3.14, we refer to Example 4.5 in the next section.

4 Examples and questions

In this section we display a few examples to illustrate our results in the previous sections.

The following example shows that the centralizer matrix algebras of non-conjugate matrices may be

Morita equivalent.

25



Example 4.1. Let R be a field and Jn(λ) the n× n Jordan matrix with the eigenvalue λ ∈ R. We take

c = J3(1)⊕ J4(1)⊕ J3(0)⊕ J2(0) and d = J3(0)⊕ J4(0)⊕ J3(1)⊕ J2(1). In general, we have mc⊕d(x) =
[mc(x),md(x)], where [ f (x),g(x)] stands for the least common multiple of f (x) and g(x) in R[x]. Then

mc(x) = x3(x−1)4, Ec = {x2,x3,(x−1)3,(x−1)4}, Mc = {x3,(x−1)4}, Pc(x
3) = {2,3},Pc((x−1)4) =

{3,4}, and md(x) = x4(x− 1)3, Ed = {x3,x4,(x− 1)2,(x − 1)3}, Md = {x4,(x− 1)3},Pd(x
4) = {3,4},

Pd((x−1)3) = {2,3}. Let π : Mc → Md be the map: x3 7→ (x−1)3,(x−1)4 7→ x4. Then it follows from

Theorem 1.2(1) that S12(c,R) and S12(d,R) are Morita equivalent, while c and d are not conjugate since

they have different minimal polynomials.

The next example shows that the existence of a Morita equivalence between principal centralizer

matrix algebras depends on the ground field.

Example 4.2. Let σ := (1 2 3 4 5)(6 7 8 · · · 17 18),τ := (1 2 3 4 5 6 7)(8 9 · · · 17 18) ∈ Σ18. The

minimal polynomials of cσ and cτ over Q are (x− 1)(x4 + x3 + x2 + x+ 1)(x12 + x11 + · · ·+ x+ 1) and

(x−1)(x10 +x9+ · · ·+x+1)(x6 +x5+ · · ·+x+1), respectively. In this case, Mcσ = {x−1,x4 +x3 +x2+
x+1,x12 + x11 + · · ·+ x+1} and Mcτ = {x−1,x10 + x9 + · · ·+ x+1,x6 + x5 + · · ·+ x+1}. By Theorem

1.2(1), S18(cσ,Q) and S18(cτ,Q) are not Morita equivalent, while S18(cσ,C) and S18(cτ,C) are Morita

equivalent (see also [35, Theorem 1.2(2)]).

Now, we show that even for centralizer matrix algebras, almost ν-stable derived equivalences may not

always arise from Morita equivalences.

Example 4.3. Let a = J5(0)⊕ J4(0)⊕ J2(0) and b = J5(0)⊕ J3(0)⊕ J1(0). Then the centralizer alge-

bras S11(a,R) and S9(b,R) are not Morita equivalent, but they are almost ν-stable derived equivalent by

Theorem 1.2(3).

We point out that even in the class of principal centralizer matrix algebras, derived equivalences do

not have to preserve representation-finiteness, while almost ν-stable derived equivalences always preserve

representation-finiteness for arbitrary algebras.

Example 4.4. Let R be an algebraically closed field, c := J5(0)⊕J4(0)⊕J1(0)∈M10(R) and d := J5(0)⊕
J2(0)⊕ J1(0) ∈ M8(R). Then S10(c,R) and S8(d,R) are derived equivalent by Theorem 1.2(2), while

S10(c,R) is representation-finite, but S8(d,R) is not by Lemma 2.20.

Generally, the converse of Proposition 3.14 may be false, as we can see by the following example.

Example 4.5. Let R be an algebraically closed field of characteristic 5. We take σ ∈ Σ19 with the cycle

type (15,4), and τ ∈ Σ20 with the cycle type (15,3,2). In this case, r(σ) is a permutation of the cycle

type (4,115) and s(σ) is a permutation of cycle type (15,14), while r(τ) has the cycle type (3,2,115) and

s(τ) has the cycle type (15,15). Clearly, S19(cs(σ),R) and S20(cs(τ),R) are derived equivalent by Corollary

3.12. Since Mcr(σ)
= {x−1,x+1,x−η,x+η} and Mcr(τ)

= {x−1,x+1,x+ ε,x− ε2}, where η and ε are

4-th and 3-th primitive roots of unity, respectively, it follows from Theorem 1.2(2) that S19(cr(σ),R) and

S20(cr(τ),R) are derived equivalent.

By Lemma 2.17, Mcσ = {(x− 1)5,(x− ε)5,(x− ε2)5,x+ 1,x−η,x+η} and Mcτ = {(x− 1)5,(x−
ε)5,(x− ε2)5,x+ 1}. Clearly, |Mcσ | = 6 6= 4 = |Mcτ |. Hence no bijections between Mcσ and Mcσ exist,

and therefore S19(cσ,R) and S20(cτ,R) cannot be derived equivalent by Theorem 1.2.

This shows that derived equivalences of the centralizer matrix algebras of p-regular parts and p-

singular parts of permutations do not have to guarantee a derived equivalence of the ones of the permuta-

tions themselves.
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Having described derived equivalences of principal centralizer matrix algebras, we propose the fol-

lowing questions for further study. In the following, R stands for a field.

Question 1. Under which necessary and sufficient conditions on matrices c ∈ Mn(R) and d ∈ Mm(R)
are Sn(c,d) and Sm(d,R) stably equivalent?

Question 2. For which permutations σ ∈ Σn and τ ∈ Σm do derived equivalences between Sn(cs(σ),R)
and Sm(cs(τ),R), and between Sn(cr(σ),R) and Sm(cr(τ),R) ensure a derived equivalence between Sn(cσ,R)
and Sm(cτ,R) ?

Related to general consideration of the centralizers of matrices, we mention the following.

Question 3. Describe structural and homological properties of Sn(C,R) for |C| ≥ 2.
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