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1. Introduction

Let R be a unitary (associative) ring and C a nonempty subset of R. The centralizer
of C in R is a subring of R defined by

S(C,R) := {r ∈ R | cr = rc for all c ∈ C}.

The center of R is S(R, R), denoted by Z(R). If C = {c} is a singleton set, then S(c, R) :=
S({c}, R) is called a principal centralizer ring. Clearly, S(C, R) =

⋂
c∈C

S(c, R) for any 

nonempty subset C of R. This means that, to understand the entire ring S(C, R), it may 
be useful to study first the individual ring S(c, R) for each c ∈ C.

The centralizer rings S(C, R) have been related to invariant rings. Let G be a subgroup 
of the group Aut(R) of automorphisms of the ring R. For any g ∈ Aut(R), the action 
of g on R is denoted by r �→ rg for r ∈ R. An element g ∈ Aut(R) is said to be inner
if there exists a unit sg ∈ R such that rg = s−1

g rsg for all r ∈ R. The fixed ring (or 
invariant ring) of R under G is RG := {r ∈ R | rg = r for all g ∈ G}. If all elements of G
are inner and C = {sg ∈ R | g ∈ G}, then S(C, R) = RG. The study of fixed rings has a 
long history (see [17]). They are investigated by many authors, we refer to [14] and the 
references therein for more information on fixed rings with G finite groups.

For a positive integer n, Mn(R) denotes the full matrix ring of all n × n matrices 
over R, and GLn(R) the general linear group of all invertible n × n matrices over R. 
For a nonempty subset C of Mn(R), the ring Sn(C, R) := S(C, Mn(R)) is called a 
centralizer matrix ring over R of degree n. For a matrix c ∈ Mn(R), the ring Sn(c, R) :=
S(c, Mn(R)) is called a principal centralizer matrix ring over R of degree n, and the 
extension Sn(c, R) ⊆ Mn(R) is called a principal centralizer matrix extension. They 
are the objectives of this note. Typical examples of principal centralizer matrix rings 
and extensions include centrosymmetric matrix algebras (see [16,20]) and the Auslander 
algebras of the truncated polynomial algebras k[x]/(xn) (see Example 4.9).

Let G be a subset of GLn(R) acting on Mn(R) by conjugation. A number 1 ≤ i ≤ n

is called a G-free point if gii = 0 for all g = (gij) ∈ G \ {In}, where In is the identity of 
Mn(R). If G = 〈c〉 is a cyclic group generated by c ∈ GLn(R), then a G-free point will 
simply be called a c-free point.

Recall that a matrix in Mn(R) is a Jordan block if it is of the form

⎛
⎜⎜⎜⎜⎜⎝

r 1 · · · 0 0

0 r
. . . 0 0

...
...

. . . . . .
...

0 0 · · · r 1
0 0 · · · 0 r

⎞
⎟⎟⎟⎟⎟⎠

n×n

where r ∈ R is called the eigenvalue of the matrix. A matrix a = (aij) ∈ Mn(R)
is called a Jordan-block matrix if it is a diagonal-block matrix with each block in 
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the main diagonal being a Jordan block. In this case, we may suppose that a has t
distinct eigenvalues in R, say r1, · · · , rt, and that, for each eigenvalue ri, there are 
si Jordan-blocks Jij of distinct sizes λij with the eigenvalue ri, 1 ≤ j ≤ si, such 
that Jij appears bij time and λi1 > λi2 > · · · > λisi for 1 ≤ i ≤ t. The set 
{(λ11, λ12, · · · , λ1s1), (λ21, λ22, · · · , λ2s2), · · · , (λt1, λt2, · · · , λtst)} is called the block type
of a. A matrix c ∈ Mn(R) is called a Jordan-similar matrix if it is similar to a Jordan-
block matrix a by a matrix in GLn(R), that is, there is a matrix u ∈ GLn(R) such that 
a = ucu−1 is a Jordan-block matrix in Mn(R). In this case, the block type of c is defined 
to be the block type of a. If R is an algebraically closed field, then every square matrix 
over R is Jordan-similar (for example, see [4, VII.7]).

In this note, we investigate cellular structures in the sense of Graham and Lehrer (see 
[6]), and Frobenius extension properties in the sense of Kasch (see [11]), of centralizer 
matrix rings. This is approached by combining methods in matrix theory with the ones 
in combinatorics and representation theory of algebras. The idea to combine them in 
proofs seems to be new.

Our first main result points out a cellular structure of principal centralizer matrix 
algebras.

Theorem 1.1. Let R be an integral domain and c a Jordan-similar matrix in Mn(R). 
Then

(1) Sn(c, R) is a cellular R-algebra.
(2) Suppose that R is a field and c is of the block type {(λ11, λ12, · · · , λ1s1), · · · , (λt1,

λt2, · · · , λtst)}. Then Sn(c, R) is a quasi-hereditary algebra if and only if λi1 = si for 
1 ≤ i ≤ t.

Next, we establish Frobenius extensions of centralizer matrix algebras included in full 
matrix algebras.

Theorem 1.2. Let R be a unitary ring.
(1) If G is a finite subgroup of GLn(R) with a G-free point, then Sn(G, R) ⊆ Mn(R) is 

a G-Galois extension. Moreover, if |G| is additionally invertible in R, then the extension 
is also split.

(2) Suppose that R has no zero-divisors and c ∈ Mn(R) is a Jordan-similar matrix 
with all eigenvalues in Z(R). Then Sn(c, R) ⊆ Mn(R) is a separable Frobenius extension. 
Moreover, the extension Sn(c, R) ⊆ Mn(R) is split if and only if c is similar to a matrix 
of the form diag(r1In1 , r2In2 , · · · , rtInt

) with 
∑

i ni = n, ri ∈ Z(R) and ri 	= rj for 
1 ≤ i 	= j ≤ t.

Thus, if R is an algebraically closed field, then every principal centralizer matrix 
extension over R is a separable Frobenius extension, and every principal centralizer 
matrix R-algebra is cellular. Moreover, the number of non-isomorphic simple modules 
of such a cellular algebra can be described combinatorially by the data of Jordan forms 
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(see Corollary 4.8). It is surprising that, in general, if C has more than one element or G
does not have any free point, then Theorem 1.2 is no longer true. This is demonstrated 
by examples in Section 3.

Consequently, we have the corollary.

Corollary 1.3. Let G be a finite group, k an algebraically closed field such that its char-
acteristic does not divide the order of G, and c an element in the group algebra kG of G
over k. Then S(c, kG) is a cellular algebra and S(c, kG) ⊆ kG is a separable Frobenius 
extension.

Theorem 1.2(1) generalizes [20, Theorem 3.1(3)] substantially, while Corollary 1.3 ex-
tends [20, Theorem 3.3] in case of R being an algebraically closed field. As principal 
centralizer matrix algebras are much more general and complicated than centrosym-
metric matrix algebras, our approach in this note is different from the one in [20]. For 
example, the involution used for the cellular structure of principal centralizer matrix 
algebras is completely different from the matrix transpose used in [20].

The paper is organized as follows: In Section 2, we fix notation and develop basic facts 
on centralizer matrix algebras. In Section 3, we first recall the definitions of and some 
known results on Frobenius and G-Galois extensions, and then prove Theorem 1.2. In 
Section 4, we show Theorem 1.1 and Corollary 1.3 after recalling the notion of cellular 
algebras. This section ends with a few open questions.

2. Principal centralizer matrix algebras

In this section we discuss basic properties of centralizer matrix algebras.
Let m, n be positive integers. We write [n] for the set {1, 2, . . . , n}.
Let R be a unitary ring (that is, an associative ring with identity), we denote by 

rad(R) the Jacobson radical of R, by Mm×n(R) the set of all m ×n matrices over R and 
by eij the matrix units of Mm×n(R), with i ∈ [m], j ∈ [n]. We write Mn(R) for Mn×n(R)
and In for the identity matrix in Mn(R). For a matrix a ∈ Mm×n(R), we denote by a′

the transpose of a.
By an R-module we mean a left R-module. For an R-module M , EndR(M) stands 

for the endomorphism ring of M . If f : X → Y and g : Y → Z are homomorphisms of 
modules, the composite of f and g will be denoted by fg. This means that the image of 
x ∈ X under f is written as (x)f , instead of f(x).

Lemma 2.1. Let C be a subset of Mn(R).
(1) If x is invertible in Mn(R), then there are isomorphisms of rings: Sn(xCx−1, R) 


Sn(C, R) and Sn(Cx, R) 
 Sn(xC, R), where xCx−1 := {xcx−1 | c ∈ C}, xC := {xc |
c ∈ C} and Cx := {cx | c ∈ C}.

(2) If each c ∈ C is invertible in Mn(R) and C−1 := {c−1 | c ∈ C}, then Sn(C, R) 

Sn(C−1, R).
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(3) If C = {ci ∈ Mn(R) | i ∈ N}, then Sn(C, R) = Sn(c, R).

Proof. (2) and (3) are trivial. For (1), the correspondence r �→ x−1rx gives rise to an 
isomorphism of rings not only from Sn(xCx−1, R) to Sn(C, R), but also from Sn(xC, R)
to Sn(Cx, R). �

Recall that an n × n matrix a is called semicirculant if it has the form
⎛
⎜⎜⎜⎜⎝
a1 a2 a3 . . . an
0 a1 a2 . . . an−1
0 0 a1 . . . an−2
...

...
...

. . .
...

0 0 0 . . . a1

⎞
⎟⎟⎟⎟⎠ ∈ Mn(R).

In this case, we write a = [a1, a2, . . . , an]. If Jn,0 = [0, 1, 0, . . . , 0] stands for the Jordan 
block of size n with the eigenvalue 0, then the semicirculant matrix a = [a1, a2, . . . , an]
can be represented as a polynomial in Jn,0:

a = a1J
0
n,0 + a2Jn,0 + · · · + anJ

n−1
n,0 =

n∑
p=1

an−p+1

p∑
j=1

ep−j+1,n−j+1

=
n∑

p=1

p∑
j=1

an−p+1ep−j+1,n−j+1,

where J0
n,0 is understood as the n × n identity matrix In.

For 1 ≤ p ≤ min{m, n}, we define

Gp :=
p∑

j=1
ep−j+1,n−j+1 ∈ Mm×n(R).

If m = n, then [a1, · · · , an] =
∑n

i=1 an−i+1G
i.

Lemma 2.2. Let I = [r, 1, 0, . . . , 0] ∈ Mm(R) and J = [r′, 1, 0, . . . , 0] ∈ Mn(R) be Jordan 
blocks with r, r′ ∈ Z(R). Define Λ := {a ∈ Mm×n(R) | Ia = aJ}.

(1) If r 	= r′ and R has no zero-divisors, then Λ = 0.
(2) If r = r′, then Λ is a free R-module with an R-basis 

{
Gp | 1 ≤ p ≤ min{m, n}

}
.

Proof. Let a = (aij) ∈ Mm×n(R) and ai0 = am+1,j = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then 
Ia = (raij + ai+1,j)m×n. Similarly, aJ = (ai,j−1 + aijr

′)m×n. Due to r, r′ ∈ Z(R), we 
know that Ia = aJ if and only if

(∗) (r − r′)aij = ai,j−1 − ai+1,j for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Thus a = (aij) ∈ Mm×n(R) lies in Λ if and only if (∗) holds.
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(1) Assume r 	= r′. Then (r−r′)am1 = am0−am+1,1 = 0. Since R has no zero-divisors, 
we have am1 = 0. It follows from (r − r′)ai1 = ai0 − ai+1,1 = −ai+1,1 that ai1 = 0 for 
1 ≤ i ≤ m. Similarly, (r − r′)ai2 = ai1 − ai+1,2 = −ai+1,2 for 1 ≤ i ≤ m. This implies 
am2 = am−1,2 = · · · = a12 = 0. Continuing this argument, we get aij = 0 for 1 ≤ i ≤ m, 
3 ≤ j ≤ n. Hence a = 0 and Λ = {0mn}.

(2) Assume r = r′. Then a = (aij) ∈ Mm×n(R) lies in Λ if and only if ai,j−1 =
ai+1,j for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus aij = ai−1,j−1 = · · · = ai−j,0 = 0 for 1 ≤ i − j ≤
m − 1 and aij = ai+1,j+1 = · · · = am+1,j+m+1−i = 0 for m −n +1 ≤ i − j ≤ m − 1. That 
is, aij = 0 for min{1, m − n + 1} ≤ i − j ≤ m − 1.

Let l := min{m, n}. For 1 − n ≤ i − j ≤ min{0, m − n}, it follows from (∗) 
that aij = ai−1,j−1 = · · · = a1,j−i+1. Let p := i − j + n and u := n − j + 1. 
Then 1 ≤ p ≤ l, i = p − u + 1, j = n − u + 1 and 1 ≤ u ≤ n. It follows from 
0 ≤ p − u = i − 1 ≤ m − 1 that a1,n−p+1 = ap−u+1,n−u+1 for 1 ≤ u ≤ p ≤ l. Thus 
a =

∑l
p=1 a1,n−p+1

∑p
u=1 ep−u+1,n−u+1 =

∑l
p=1 a1,n−p+1G

p. Hence a ∈ Λ can be writ-
ten as an R-linear combination of {Gp | 1 ≤ p ≤ l}.

We show Gp ∈ Λ for 1 ≤ p ≤ l, that is, (Gp)i,j−1 = (Gp)i+1,j for 1 ≤ i ≤ m and 
1 ≤ j ≤ n. In fact,

ei+1,i+1G
pejj = ei+1,i+1

p∑
v=1

ep−v+1,n−v+1ejj =
p∑

v=1
δi+1,p−v+1δn−v+1,jei+1,j ,

eiiG
pej−1,j−1 = eii

p∑
u=1

ep−u+1,n−u+1ej−1,j−1 =
p∑

u=1
δi,p−u+1δn−u+1,j−1ei,j−1

=
p∑

u=1
δi+1,p−u+2δn−u+2,jei,j−1 =

p−1∑
v=0

δi+1,p−v+1δn−v+1,jei,j−1

=
p∑

v=1
δi+1,p−v+1δn−v+1,jei,j−1.

Thus (Gp)i,j−1 =
∑p

v=1 δi+1,p−v+1δn−v+1,j = (Gp)i+1,j . This implies that Gp ∈ Λ and 
{Gp | 1 ≤ p ≤ l} is an R-generating set of Λ.

Moreover, {Gp | 1 ≤ p ≤ l} is an R-linear independent set. Indeed, (p −u + 1, n −u +
1) = (p′ − u′ + 1, n − u′ + 1) if and only if (p, u) = (p′, u′). Since 1 ≤ p − u + 1 ≤ l ≤ m

and 1 ≤ n − u + 1 ≤ n, there holds the inclusion {ep−u+1,n−u+1 | 1 ≤ p ≤ l, 1 ≤ u ≤
p} ⊆ {epu | 1 ≤ p ≤ m, 1 ≤ u ≤ n}. As the matrix units {epu | 1 ≤ p ≤ m, 1 ≤ u ≤ n} is 
an R-basis of Mm×n(R), we know that if 

∑l
p=1 apG

p =
∑l

p=1
∑p

u=1 apep−u+1,n−u+1 = 0
for ap ∈ R, then ap = 0 for 1 ≤ p ≤ l, and therefore {Gp | 1 ≤ p ≤ l} is a set of R-linear 
independent elements. Hence {Gp | 1 ≤ p ≤ l} is an R-basis of Λ. �

In Lemma 2.2(2), the basis elements Gp do not involve the value r. Hence Λ is in-
dependent of the choice of r. In fact, if we write I = rIm + Jm,0 and J = rIn + Jn,0, 
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then Ia = aJ for all a ∈ Mm×n(R) is equivalent to saying that Jm,0a = aJn,0 for all 
a ∈ Mm×n(R). Thus Λ is independent of the choice of r.

A special case of Lemma 2.2 is c := I = J = [r, 1, 0, . . . , 0] ∈ Mn(R) for some 
r ∈ Z(R). Then Sn(c, R) is the set of all semicirculant matrices in Mn(R). Clearly, 
Sn(c, R) 
 R[x]/(xn) as rings. Moreover, if R is a local ring, that is, the set of all 
non-units in R is an ideal of R, then Sn(c, R) is a local ring.

Example 2.3. Let c1 = [1, 1, 0] ∈ M3(R), c2 = [1, 1] ∈ M2(R) and c = diag(c1, c2) ∈
M5(R). Then S5(c, R) is a free R-module of rank 9 by Lemma 2.2(2). If R is a field, then 
S5(c, R) is isomorphic to an algebra given by the quiver with relations:

1•
α

•2,
β

βαβα = 0.

Here the vertices 1 and 2 correspond to the primitive idempotents f1 = e11 + e22 + e33

and f2 = e44 + e55 in S5(c, R), respectively, and the compose αβ of two arrows α and 
β means that α comes first and then β follows, that is, αβ is a path of length 2 from 

the vertex 1 to itself. Thus S5(c, R) is a cellular algebra with Cartan matrix 
(

3 2
2 2

)
(see [19, Theorem 6.1]). Due to S3(c1, R) 
 R[X]/(X3) and S2(c2, R) 
 R[X]/(X2), we 
know S5(c, R) 	
 S3(c1, R) × S2(c2, R). This example shows that the study of Sn(c, R)
related to c cannot be reduced to the one related to each of Jordan blocks ci. Gen-
erally, the centralizer of c in Mm+n(R) does not coincide with the centralizer of c in 
diag

(
Mm(R), Mn(R)

)
. Also, observe that M5(R) is not a free S5(c, R)-module.

Now, we assume that c is a Jordan-block matrix with the same eigenvalues in Z(R). 
More precisely, suppose that c has bi Jordan-blocks Ji of size λi for 1 ≤ i ≤ s with 
λ1 > λ2 > · · · > λs, that is,

(†) c = diag(Jb1
1 , Jb2

2 , . . . , Jbs
s ) ∈ Mn(R)

with Jj = [r, 1, 0, · · · , 0] ∈ Mλj
(R) appearing bj times for 1 ≤ j ≤ s and r ∈ Z(R).

We define

m0 := 0, mi :=
i∑

p=1
bp, nij :=

i−1∑
p=1

bpλp + jλi, 1 ≤ i ≤ s, 1 ≤ j ≤ bi.

Then m0 < m1 < · · · < ms and ms is the number of Jordan blocks of c and nsbs = n is 
the size of the matrix c. For each i ∈ [ms], let g(i) be the smallest g(i) ∈ [s] such that 
i ≤ mg(i), and let h(i) := i −mg(i)−1 ∈ [bg(i)] and θij := min{λg(i), λg(j)} for j ∈ [ms]. 
Note that [n] = {ng(j)h(j) − λg(j) + w ∈ N | 1 ≤ j ≤ ms, 1 ≤ w ≤ λg(j)}.
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For each i ∈ [ms], we define

fi :=
ng(i)h(i)∑

p=ng(i)h(i)−λg(i)+1

epp,

that is, fi is the identity matrix corresponding to the i-th block in the identity matrix 
In. Here In is regarded as a diagonal ms × ms block matrix. Then 1 =

∑ms

i=1 fi is 
a decomposition of 1 into pairwise orthogonal idempotents of Sn(c, R). Consequently, 
Sn(c, R) has the matrix decomposition

Sn(c,R) =

⎛
⎜⎜⎜⎝

f1Sn(c,R)f1 f1Sn(c,R)f2 · · · f1Sn(c,R)fms

f2Sn(c,R)f1 f2Sn(c,R)f2 · · · f2Sn(c,R)fms

...
...

. . .
...

fms
Sn(c,R)f1 fms

Sn(c,R)f2 · · · fms
Sn(c,R)fms

⎞
⎟⎟⎟⎠

ms×ms

It is easy to see that an ms ×ms block matrix a = (Aij) with Aij ∈ Mλg(i)×λg(j)(R) lies 
in Sn(c, R) if and only if each block Aij satisfies Jg(i)Aij = AijJg(j) for 1 ≤ i, j ≤ ms. 
More precisely, a ∈ Sn(c, R) is written as a block-matrix form

a = (Aij) =

⎛
⎜⎜⎝

A11 A12 . . . A1ms

A21 A22 . . . A2ms

...
...

. . .
...

Ams1 Ams2 . . . Amsms

⎞
⎟⎟⎠

ms×ms

where the diagonal entry Aii is a λg(i) × λg(i) semicirculant matrix and the off-diagonal 
entry Aij is a λg(i) × λg(j) matrix over R, having the block form:

Aij =

⎧⎨
⎩

(
[a1, a2, · · · , aλg(j) ]
0λg(i)−λg(j),λg(j)

)
if λg(i) > λg(j),(0λg(i),λg(j)−λg(i) [a1, a2, · · · , aλg(i) ]

)
if λg(i) < λg(j),

with all ap ∈ R. Visually,

Aij =
(

0θij ,λg(j)−θij [a1, a2, · · · , aθij ]
0λg(i)−θij ,λg(j)−θij 0λg(i)−θij , θij

)
.

For simplicity, we set Λ := Sn(c, R), Λij := fiSn(c, R)fj and Λ̃ij := {a ∈
Mλg(i)×λg(j)(R) | Jg(i)a = aJg(j)}. Given 1 ≤ i, j ≤ ms and 1 ≤ p ≤ θij , define

Gp
ij :=

p∑
u=1

ep−u+1,λg(j)−u+1 ∈ Mλg(i)×λg(j)(R).

By Lemma 2.2(2), {Gp
ij | 1 ≤ p ≤ θij} is an R-basis of Λ̃ij , which has the property.
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Lemma 2.4. (1) If 1 ≤ i, j, k ≤ ms, 1 ≤ p ≤ θik, 1 ≤ q ≤ θkj, then

Gp
ikG

q
kj =

{
0 if p + q − λg(k) < 1,
G

p+q−λg(k)
ij if p + q − λg(k) ≥ 1.

(2) For 1 ≤ i, j, k ≤ ms, 1 ≤ m ≤ θik, 1 ≤ l ≤ θkj, xp, yq ∈ R for 1 ≤ p ≤ m and 
1 ≤ q ≤ l, let

Xik :=
m∑

p=1
xm−p+1G

p
ik ∈ Λ̃ik and Ykj :=

l∑
q=1

yl−q+1G
q
kj ∈ Λ̃kj .

Then

XikYkj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if m + l − λg(k) < 1,

m+l−λg(k)∑
u=1

m+l−λg(k)−u+1∑
v=1

xvym+l−λg(k)−u+1−v+1G
u
ij if m + l − λg(k) ≥ 1.

Proof. (1) By definition,

Gp
ikG

q
kj = (

p∑
u=1

ep−u+1,λg(k)−u+1)(
q∑

v=1
eq−v+1,λg(j)−v+1)

=
p∑

u=1

q∑
v=1

δλg(k)−u+1,q−v+1ep−u+1,λg(j)−v+1

=
∑
v∈V

ep+q−λg(k)−v+1,λg(j)−v+1,

where V := {v ∈ [q] | 1 ≤ λg(k) − q + v ≤ p}. If V = ∅, then Gp
ikG

q
kj = 0. Now we take 

into account the case V 	= ∅. Let v0 ∈ V , that is, 1 ≤ v0 ≤ q and 1 ≤ λg(k) − q + v0 ≤ p. 
It follows from q ≤ θkj = min{λg(k), λg(j)} ≤ λg(k) that 1 ≤ v0 ≤ p + q − λg(k) and 
V = {v | 1 ≤ v ≤ p + q−λg(k)}. Conversely, if 1 ≤ p + q−λg(k), then 1 ∈ V . Thus V 	= ∅
if and only if p + q − λg(k) ≥ 1. Therefore, for V 	= ∅,

Gp
ikG

q
kj =

p+q−λg(k)∑
v=1

ep+q−λg(k)−v+1,λg(j)−v+1 = G
p+q−λg(k)
ij

This completes the proof of (1).
(2) By definition,

XikYkj = (
m∑

xm−p+1G
p
ik)(

l∑
yl−q+1G

q
kj) =

m∑ l∑
xm−p+1yl−q+1G

p
ikG

q
kj .
p=1 q=1 p=1 q=1
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By (1), Gp
ikG

q
kj = 0 for p + q − λg(k) < 1. Let D := {(p, q) | 1 ≤ p ≤ m, 1 ≤ q ≤ l, 1 ≤

p + q − λg(k)}. Then Gp
ikG

q
kj = 0 for (p, q) /∈ D, and therefore

(∗)
m∑

p=1

l∑
q=1

xm−p+1yl−q+1G
p
ikG

q
kj =

∑
(p,q)∈D

xm−p+1yl−q+1G
p
ikG

q
kj .

If D = ∅, then the summation (∗) equals 0, and therefore XikYkj = 0. If D 	= ∅, then 
we pick up an arbitrary element (p0, q0) ∈ D, that is, 1 ≤ p0 ≤ m, 1 ≤ q0 ≤ l and 
1 ≤ p0 +q0−λg(k). In this case, λg(k)−p0 +1 ≤ q0 ≤ l and λg(k)− l+1 ≤ p0 ≤ m. Hence 
m +l−λg(k) ≥ 1 and D = {(p, q) | λg(k)−l+1 ≤ p ≤ m, λg(k)−p +1 ≤ q ≤ l}. Conversely, 
if m + l − λg(k) ≥ 1, then (m, l) ∈ D. Thus D 	= ∅ if and only if m + l − λg(k) ≥ 1. It 
follows from (1) that, for m + l − λg(k) ≥ 1,

XikYkj =
m∑

p=λg(k)−l+1

l∑
q=λg(k)−p+1

xm−p+1yl−q+1G
p+q−λg(k)
ij

=
m∑

p=λg(k)−l+1

p+l−λg(k)∑
u=1

xm−p+1yp+l−λg(k)−u+1G
u
ij

=
m+l−λg(k)∑

v=1

m+l−λg(k)−v+1∑
u=1

xvym+l−λg(k)−u+1−v+1G
u
ij

=
m+l−λg(k)∑

u=1

m+l−λg(k)−u+1∑
v=1

xvym+l−λg(k)−u+1−v+1G
u
ij .

Thus (2) follows. �
If we write a ∈ Mn(R) as an ms × ms block matrix a = (Apq) with Apq ∈

Mλg(i)×λg(j)(R), then a ∈ fiSn(c, R)fj if and only if the (i, j)-block Aij satisfies 
Jg(i)Aij = AijJg(j) and Apq = 0 for (p, q) 	= (i, j). Thus there is an isomorphism of 
R-modules

Λ̃ij −→ Λij = fiSn(c,R)fj

a =
θij∑
p=1

ap(
p∑

u=1
ep−u+1,λg(j)−u+1) �→

θij∑
p=1

ap(
p∑

u=1
eng(i)h(i)−λg(i)+p−u+1,ng(j)h(j)−u+1),

induced by the canonical monomorphism of R-modules

ϕij : Mλg(i)×λg(j)(R) −→ Mn(R),

b =
λg(i)∑ λg(j)∑

bpuepu �→
λg(i)∑ λg(j)∑

bpueng(i)h(i)−λg(i)+p,ng(j)h(j)−λg(j)+u,

p=1 u=1 p=1 u=1
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which sends b = (bpq) ∈ Mλg(i)×λg(j)(R) to an ms ×ms block matrix in which b is in the 
(i, j)-block and 0 in all other blocks. Let

F p
ij := (Gp

ij)ϕij =
p∑

u=1
eng(i)h(i)−λg(i)+p−u+1,ng(j)h(j)−u+1.

Then {F p
ij | 1 ≤ p ≤ θij} is an R-basis of fiSn(c, R)fj and {F p

ij | 1 ≤ i, j ≤ ms, 1 ≤ p ≤
θij} is an R-basis of Sn(c, R).

Lemma 2.5. If 1 ≤ i, j, k, l ≤ ms, 1 ≤ p ≤ θik, 1 ≤ q ≤ θkj, then

F p
ikF

q
lj = δkl(Gp

ikG
q
kj)ϕij =

{
0 if k 	= l or p + q − λg(k) < 1,
F

p+q−λg(k)
ij if k = l and p + q − λg(k) ≥ 1.

Proof. Clearly, F p
ik ∈ fiΛfk and F q

lj ∈ flΛfj . If k 	= l, then fkfl = 0, and therefore 
F p
ikF

q
lj = 0. If k = l, then

F p
ikF

q
kj = (

p∑
u=1

eng(i)h(i)−λg(i)+p−u+1,ng(k)h(k)−u+1)(
q∑

v=1
eng(k)h(k)−λg(k)+q−v+1,ng(j)h(j)−v+1)

=
p∑

u=1

q∑
v=1

δng(k)h(k)−u+1,ng(k)h(k)−λg(k)+q−v+1eng(i)h(i)−λg(i)+p−u+1,ng(j)h(j)−v+1

= (
p∑

u=1

q∑
v=1

δλg(k)−u+1,q−v+1ep−u+1,λg(j)−v+1)ϕij

= (Gp
ikG

q
kj)ϕij .

If p + q − λg(k) < 1, then Gp
ikG

q
kj = 0 by Lemma 2.4(1), and therefore F p

ikF
q
kj = 0. 

If p + q − λg(k) ≥ 1, then it follows from Lemma 2.4(1) that F p
ikF

q
kj = (Gp

ikG
q
kj)ϕij =

(Gp+q−λg(k)
ij )ϕij = F

p+q−λg(k)
ij . �

Lemma 2.6. Let c = diag(Jb1
1 , Jb2

2 , . . . , Jbs
s ) ∈ Mn(R) be a Jordan-block matrix with 

Jordan blocks Jj = [r, 1, 0, · · · , 0] ∈ Mλj
(R) for 1 ≤ j ≤ s where Jj appears bj times. If 

λ1 > λ2 > · · · > λs, then
(1) fiSn(c, R)fi 
 R[x]/(xλg(i)) for 1 ≤ i ≤ ms.
(2) fiSn(c, R)fj is a free R-module with an R-basis {F p

ij | 1 ≤ p ≤ θij} of rank θij for 
1 ≤ i, j ≤ ms.

(3) Sn(c, R) is a free R-module with an R-basis {F p
ij | 1 ≤ i, j ≤ ms, 1 ≤ p ≤ θij} of 

rank 
∑s

i=1(m2
i −m2

i−1)λi.
(4) If R is a local ring and all bi = 1, then
(i) {f1, f2, · · · , fs} is a complete set of primitive orthogonal idempotents of Sn(c, R).
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(ii) Sn(c, R) is a basic algebra, that is, Sn(c, R)fi � Sn(c, R)fj for all i, j with 1 ≤
i 	= j ≤ s.

(iii) rad(Sn(c, R)) = {a = (Aij)s×s ∈ Sn(c, R) | Aii = [xi1, xi2, . . . , xiλi
], xi1 ∈

rad(R), xij ∈ R, 1 ≤ i ≤ s, 2 ≤ j ≤ λi}. Particularly, if R is a field, then rad(Sn(c, R))
is a free R-module with an R-basis {F p

ij | 1 ≤ i, j ≤ s, 1 ≤ p ≤ θij}\{Fλi
ii | 1 ≤ i ≤ s}.

(iv) Sn(c, R) is an indecomposable algebra, that is, 1 and 0 are the only central idem-
potents of Sn(c, R).

Proof. (1)-(3) are clear. It remains only to prove (4). Since bi = 1 for 1 ≤ i ≤ s, we have 
g(i) = i and θij = min{λi, λj} for 1 ≤ i, j ≤ s.

(i) Since R is a local ring, the only idempotent elements in R are 0 and 1. This implies 
that the only idempotent elements in R[x]/(xλi) are 0 and 1, too. It follows from (1) 
that fiSn(c, R)fi contains only 0 and 1 as idempotent elements. Hence fi is primitive, 
and therefore all fi form a complete set of primitive orthogonal idempotents of Sn(c, R).

(ii) By (2), Sn(c, R)fi is a free R-module of rank iλi +
∑s

p=i+1 λp for 1 ≤ i ≤ s. For 
1 ≤ i < j ≤ s, it follows from λi > λj that the R-rank of Sn(c, R)fi is bigger than 
the R-rank of Sn(c, R)fj . Thus the R-rank of Sn(c, R)fi does not equal the R-rank of
Sn(c, R)fj for 1 ≤ i 	= j ≤ s. Hence Sn(c, R)fi � Sn(c, R)fj for i 	= j. This implies that 
Sn(c, R) is a basic algebra.

(iii) Let N := {a = (Aij)s×s ∈ Sn(c, R) | Aii = [xi1, xi2, . . . , xiλi
], xi1 ∈ rad(R), xij ∈

R, 1 ≤ i ≤ s, 2 ≤ j ≤ λi}. Then fiNfj = fiSn(c, R)fj for 1 ≤ i 	= j ≤ s. If i = j, then 
fiNfi = {([x1, x2, . . . , xλi

])ϕii | x1 ∈ rad(R), xu ∈ R, 2 ≤ u ≤ λi}. By Lemma 2.2(2), 
for x1, x2, . . . , xλi

∈ R, we have

([x1, x2, . . . , xλi
])ϕii = (

λi∑
p=1

xλi−p+1G
p
ii)ϕii =

λi∑
p=1

xλi−p+1F
p
ii = x1F

λi
ii +

λi−1∑
p=1

xλi−p+1F
p
ii.

If we take x1 = 0, then we deduce F p
ii ∈ fiNfi for 1 ≤ p < λi, and therefore {F p

ii |
1 ≤ p < λi} ⊆ fiNfi. If R is a field, then rad(R) = 0 and fiNfi is an R-space 
with an R-basis {F p

ii | 1 ≤ p < λi}. In this case, N is an R-space with an R-basis 
{F p

ij | 1 ≤ i, j ≤ s, 1 ≤ p ≤ θij}\{Fλi
ii | 1 ≤ i ≤ s} by (3).

For 1 ≤ i ≤ s, Sn(c, R)fi is indecomposable and projective by (1), and therefore 
fiSn(c, R)fi is a local ring. It follows from [1, Proposition 17.19] that Sn(c, R)fi is a 
projective cover of a simple module. This means that the radical of Sn(c, R)fi is the only 
maximal submodule of Sn(c, R)fi. If Nfi is a maximal submodule of Sn(c, R)fi, then 
Nfi is the radical of the Sn(c, R)-module Sn(c, R)fi. This implies rad(Sn(c, R)) = N . So, 
we need only to show that Nfi is a maximal submodule of Sn(c, R)fi for 1 ≤ i ≤ s. For 
this purpose, we first prove that Nfi is an Sn(c, R)-submodule of Sn(c, R)fi. It is an R-
submodule of Sn(c, R)fi. We have to prove fjSn(c, R)Nfi ⊆ fjNfi ⊆ Nfi for 1 ≤ j ≤ s. 
For j 	= i, we have fjNfi = fjSn(c, R)fi. Then fjSn(c, R)Nfi ⊆ fjSn(c, R)fi = fjNfi ⊆
Nfi. For j = i, we have to show fiSn(c, R)Nfi ⊆ Nfi. This is equivalent to saying that 
fiSn(c, R)fkNfi ⊆ fiNfi ⊆ Nfi holds for all 1 ≤ k ≤ s. So, suppose
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a =
θik∑
p=1

aθik−p+1F
p
ik ∈ fiSn(c,R)fk, b =

θik∑
q=1

bθik−q+1F
q
ki ∈ fkNfi,

with all ai, bi ∈ R, where θik = min{λi, λk}, we show ab ∈ fiNfi ⊆ Nfi. Actually, by 
Lemma 2.4(2), if 2θik−λk < 1, then ab = 0 ∈ fiNfi ⊆ Nfi. Now, suppose 2θik−λk ≥ 1. 
By definition,

ab = (
θik∑
p=1

aθik−p+1F
p
ik)(

θik∑
q=1

bθik−q+1F
q
ki)

=
∑

1≤p,q≤θik

aθik−p+1bθik−q+1(F p
ikF

q
ki) (by Lemma 2.5)

=
∑

1≤p,q≤θik

aθik−p+1bθik−q+1(Gp
ikG

q
ki)ϕii (by Lemma 2.4(2))

= (
2θik−λk∑

u=1

2θik−λk−u+1∑
v=1

avb2θik−λk−u+1−v+1G
u
ii)ϕii.

If i 	= k, then 2 θik −λk = 2 min{λi, λk} −λk < λi and λi− (2 θik −λk) ≥ 1. In this case,

ab = ([0, · · · , 0, a1b1, a1b2 + a2b1, · · · ,
2θik−λk∑

v=1
avb2θik−λk−v+1])ϕii,

where 0 appears λi − (2 θik − λk) times. Note that fiNfi = {([x1, x2, . . . , xλi
])ϕii | x1 ∈

rad(R), xu ∈ R, 2 ≤ u ≤ λi}. Thus ab ∈ fiNfi ⊆ Nfi.
If i = k, then θik = min{λi, λk} = λi, and therefore

ab = (
λi∑
u=1

λi−u+1∑
v=1

avbλi−u+1−v+1G
u
ii)ϕii,

that is, ab is an s × s block matrix with [a1b1, a1b2 + a2b1, · · · , 
∑λi

v=1 avbλi−v+1] in the 
(i, i)-block of size λi × λi, and 0 in the (p, q)-block of size λp × λq if (p, q) 	= (i, i). As 
fiNfi = {([x1, x2, . . . , xλi

])ϕii | x1 ∈ rad(R), xu ∈ R, 2 ≤ u ≤ λi}, it follows from 
b1 ∈ rad(R) that a1b1 ∈ rad(R) and ab ∈ fiNfi ⊆ Nfi. Hence Nfi is a submodule of 
the Sn(c, R)-module Sn(c, R)fi.

Now, we show that Nfi is a maximal submodule of Sn(c, R)fi. Suppose that M is a 
submodule of Sn(c, R)fi with Nfi � M . Since Nfi is properly contained in M , there is an 
element y ∈ M\Nfi. Since y = f1y+· · ·+fiy+· · ·+fsy and fjSn(c, R)fi ⊆ Nfi for j 	= i, 
we deduce fiy = fiyfi /∈ Nfi. This means that if we write (fiyfi)ϕ−1

ii = [y1, y2, · · · , yλi
], 

then y1 /∈ rad(R). Since R is a local ring, the elements in R \ rad(R) are invertible in R. 
Thus
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Fλi
ii = ([1, 0, · · · , 0])ϕii =

(
y−1
1 ([y1, y2, · · · , yλi

] − [0, y2, · · · , yλi
])
)
ϕii

= y−1
1 ([y1, y2, · · · , yλi

])ϕii − y−1
1 ([0, y2, · · · , yλi

])ϕii.

Thanks to ([y1, y2, · · · , yλi
])ϕii = fiyfi ∈ M and ([0, y2, · · · , yλi

])ϕii ∈ fiNfi ⊆ M , we 
have Fλi

ii ∈ M . Moreover, {F p
ui | 1 ≤ u ≤ s, 1 ≤ p ≤ θui}\{Fλi

ii } ⊆ Nfi ⊂ M . This 
means that M contains an R-basis of Sn(c, R)fi by (3), and therefore M = Sn(c, R)fi. 
Hence Nfi is a maximal submodule of Sn(c, R)fi, and rad(Sn(c, R)) = N .

(iv) This follows from the fact that fiSn(c, R)fj 	= 0 for all i, j by (3). �
Finally, we assume that R has no zero-divisors and c is a Jordan-block matrix with 

different eigenvalues in Z(R).
In this case we may suppose that c has t distinct eigenvalues in R, say r1, · · · , rt, and 

that, for each eigenvalue ri, there are si Jordan-blocks Jij of different sizes λij with the 
same eigenvalue ri for 1 ≤ j ≤ si, such that Jij appears bij times in c, that is,

(††) c = diag(Jb11
11 , Jb12

12 , · · · , Jb1s1
1s1 , Jb21

21 , Jb22
22 · · · , Jb2s2

2s2 , · · · , Jbt1
t1 , Jbt2

t2 · · · , Jbtst
tst )

∈ Mn(R),

where Jij = [ri, 1, 0, . . . , 0] ∈ Mλij
(R) and bij ≥ 1 for 1 ≤ j ≤ si and 1 ≤ i ≤ t. Further, 

we assume λi1 > λi2 > · · · > λisi , ri ∈ Z(R), and ri 	= rj for i 	= j.
Let λi := (λi1, λi2, · · · , λisi) (with a fixed ordering). The set {λi | 1 ≤ i ≤ t} is called 

the block type of c. If t = 1, that is, c is a Jordan-block matrix with the same eigenvalue, 
then the block type of c just encodes the different sizes of blocks in c. If d is similar to a 
Jordan-block matrix c by an invertible matrix over R, then the block type of d is defined 
to be the block type of c.

We define

ni :=
si∑

p=1
bipλip, τ0 := 0, τi :=

i∑
p=1

np, εi :=
τi∑

p=τi−1+1
epp ∈ Mn(R), 1 ≤ i ≤ t.

Note that [n] = {τq−1 + v ∈ N | 1 ≤ q ≤ t, 1 ≤ v ≤ nq} and that 1 =
∑t

i=1 εi
is a decomposition of In into pairwise orthogonal central idempotents in Sn(c, R). For 
1 ≤ i ≤ t, we define ci := diag(Jbi1

i1 , Jbi2
i2 , · · · , Jbisi

isi
) ∈ Mni

(R). It follows from ri 	= rj
for 1 ≤ i 	= j ≤ t and Lemma 2.2(2) that Sn(c, R) is isomorphic to

diag(Sn1(c1, R), Sn2(c2, R), . . . , Snt
(ct, R))

as rings. We write these observations as the following lemma for reference.

Lemma 2.7. If R has no zero-divisors and c is of the form (††), then
(1) 1 =

∑t
i=1 εi is a decomposition of 1 into pairwise orthogonal central idempotents 

in Sn(c, R).
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(2) Sn(c, R) 
 diag(Sn1(c1, R), Sn2(c2, R), . . . , Snt
(ct, R)) as rings, that is, Sn(c, R)


 Sn1(c1, R) × Sn2(c2, R) × · · · × Snt
(ct, R).

Thus the study of Sn(c, R) related to a general Jordan-similar matrix c can be reduced 
to the ones related to Jordan-similar matrices with the same eigenvalues, while the latter 
cannot be further reduced by Example 2.3.

For the convenience of the reader, we quote the following elementary fact which will 
be used frequently in proofs.

Lemma 2.8. Suppose that G is an additive group and n is a positive integer. If apq ∈ G

for 1 ≤ q ≤ p ≤ n, then

n∑
p=1

p∑
q=1

apq =
n∑

q=1

n∑
p=q

apq =
n∑

q=1

n−q+1∑
u=1

au+q−1,q =
n∑

u=1

n−u+1∑
q=1

au+q−1,q.

3. Frobenius extensions

This section is devoted to proving Theorem 1.2.
Let A be a unitary ring. If B a subring of A with the same identity, then we say 

that B ⊆ A is an extension of rings. Frobenius extensions, initiated by Kasch, form 
one of the most prominent instances of extensions of rings. They are a generalization 
of Frobenius algebras over a field and have played an important role in many aspects 
of mathematics from representation theory (see [20], [18]), knot theory and solutions to 
Yang-Baxter equations (see [9]), to topological quantum field theories and code theory 
(see [12] and [5]). A good introduction to the subject for beginners may be the book by 
Kadison (see [9]).

Definition 3.1. (1) An extension B ⊆ A of rings is called a Frobenius extension if BA is 
a finitely generated projective B-module and HomB(BA, B) 
 AAB as A-B-bimodules.

(2) An extension B ⊆ A is said to be separable if the multiplication map A ⊗B A →
A, x ⊗ y �→ xy, is a split surjective homomorphism of A-bimodules, and split if the 
B-bimodule BBB is a direct summand of BAB .

We need the following properties of Frobenius extensions. For proofs, we refer to [8, 
Theorem 1.2, p.3; Corollaries 2.16-17, p.15].

Lemma 3.2. Let B ⊆ A be an extension of rings.
(1) The extension is a Frobenius extension if and only if there exist a B-B-bimodule 

homomorphism E ∈ HomB−B(BAB , BBB), and elements xi, yi ∈ A, 1 ≤ i ≤ n, such 
that, for any a ∈ A,

n∑
xi (yia)E = a =

∑
(axi)E yi.
i=1 i
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In this case, (E, xi, yi) is called a Frobenius system of the extension.
(2) Suppose that B ⊆ A is a Frobenius extension with a Frobenius system (E, xi, yi). 

Then B ⊆ A is split if and only if there exists d ∈ CA(B) := {a ∈ A | ab = ba for all b ∈
B} such that E(d) = 1, and separable if and only if there exists d ∈ CA(B) such that ∑n

i=1 xidyi = 1.

Examples of Frobenius extensions are group Galois extensions (see [3]).

Definition 3.3. Suppose G is a finite group acting on an algebra A with the subalgebra B
of invariants, that is, B = AG := {a ∈ A | ag = a, g ∈ G}. The extension B ⊆ A is called 
G-Galois if there are finite number of elements xi, yi ∈ A such that 

∑
i xiyi = 1 and ∑

i xiy
g
i = 0 for each nonidentity g in G. Equivalently 

∑
i x

g
i yi = 0 if g is nonidentity, 

and 1 if g is the identity in G.

Given such a G-Galois extension B := AG ⊆ A, the B-B-bimodule homomorphism 
E : A → B defined by a �→

∑
g∈G ag together with {xi, yi} forms a Frobenius system. 

Thus the extension B ⊆ A is a separable, Frobenius extension. Moreover, it is shown in 
[3] that if A is a G-Galois extension over B, then End(AB) is isomorphic to the skew 
group algebra of G over A. For further information on G-Galois extensions and their 
generalizations, we refer to [10].

Immediately, we have the basic observations on Frobenius extensions.

Lemma 3.4. If Bi ⊆ Ai is a Frobenius extension of rings for 1 ≤ i ≤ s, then B1 × B2 ×
· · · ×Bs ⊆ A1 ×A2 × · · · ×As is a Frobenius extension of rings.

The following lemma is easy and its proof is left to the reader.

Lemma 3.5. Let f : B ↪→ A and g : C ↪→ A be extensions of rings. Assume that there 
exist ring isomorphisms ϕ : B → C and ψ : A → A such that fψ = ϕg. Then B ⊆ A is 
a Frobenius extension if and only if C ⊆ A is a Frobenius extension. Moreover, B ⊆ A

is separable (or split) if and only if C ⊆ A is separable (or split).

Consequently, we have the following lemma from Lemmas 3.5 and 2.1(1).

Lemma 3.6. Suppose that two matrices c and d in Mn(R) are similar. Then Sn(c, R) ⊆
Mn(R) is a Frobenius (or separable, or split) extension if and only if so is Sn(d, R) ⊆
Mn(R).

Our consideration on centralizer matrix algebras is divided into two cases. First, we 
consider the centralizers of invertible matrices.

Theorem 3.7. If R is a unitary ring and G is a finite subgroup of GLn(R) with a G-free 
point, then Sn(G, R) ⊆ Mn(R) is a G-Galois extension. In particular, the extension is a 
separable Frobenius extension.
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Proof. By definition, Sn(G, R) is just the invariant matrices of Mn(R) with respect to 
G acting on Mn(R) by conjugation, that is, Sn(G, R) = {a ∈ Mn(R) | ag := gag−1 =
a} = Mn(R)G.

Suppose that i ∈ [n] is a G-free point. We define xj := eji and yj := eij ∈ Mn(R)
for j ∈ [n]. Then 

∑n
j=1 xjyj =

∑
j ejieij =

∑n
j=1 ejj = In. For g = (gpq) ∈ G \ {In}, 

since i is a G-free point, it follows that 
∑

j xj(yj)g =
∑

j xjgyjg
−1 =

∑
j ejigeijg

−1 =∑
j giiejjg

−1 = 0. By Definition 3.3, Sn(G, R) ⊆ Mn(R) is a G-Galois extension. There-
fore Sn(G, R) ⊆ Mn(R) is a separable Frobenius extension. �

As a consequence of Theorem 3.7, we have the corollary.

Corollary 3.8. Let G be a finite subgroup of GLn(R) with a G-free point. If |G| is invert-
ible in R, then

(1) Sn(G, R) ⊆ Mn(R) is a split Frobenius extension, and global and dominant di-
mensions of Sn(G, R) are the same as the ones of R, respectively.

(2) Sn(G, R) is semisimple if R is semisimple.

Proof. (1) Since

( 1
|G| )E =

∑
h∈G

h
1
|G|h

−1 = 1
|G|

∑
h∈G

hh−1 = 1 ∈ Sn(G,R),

the extension is split by Lemma 3.2(2). The statement on global dimensions follows 
from the fact that the extension is a split, separable Frobenius extension. In the case, 
the global dimension of Sn(G, R) equals the one of Mn(R) (see [8, p.14]), and the latter 
equals the global dimension of R since R and Mn(R) are Morita equivalent. For dominant 
dimensions, the statement follows from [18] or [15, p.91], where the definition of dominant 
dimensions can also be founded.

(2) If R is a semisimple ring and |G| is invertible in R, then Sn(G, R) is semisimple. 
This follows from [14, Theorem 1.14] which says that, for a finite group acting on a ring 
R, the Jacobson radical of the fixed ring is the intersection of the Jacobson radical of R
with the fixed ring itself if the order of G is invertible in R. �

Now, we apply Theorem 1.2 to the centralizers of permutation matrices. To state our 
result precisely, we first introduce a few notions.

For a natural number n, we denote by Σn the symmetric group of all permutations 
on [n]. Any σ ∈ Σn can be written as a product of disjoint cycles, say σ = σ1σ2 . . . σs, 
where σi is a λi-cycle. Here, λi is allowed to be 1, and λ = (λ1, λ2, . . . , λs) is called the 
cycle type of σ. Clearly, the order of σ is the least common multiple of λ′

is, denoted by 
lcm(λ1, λ2, . . . , λs). Let cn(σ) := e1,(1)σ+e2,(2)σ+· · ·+en,(n)σ be the permutation matrix 
in Mn(R) corresponding to σ. If the subscript n in cn(σ) is clear from the context, we 
simply write cσ for cn(σ). We have cσcτ = cστ , c′σ = cσ−1 = (cσ)−1 and (cσ)ij = δ(i)σ,j
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for i, j ∈ [n]. Recall that a′ denotes the transpose of the matrix a and δij is the Kronecker 
symbol.

Let G be a subgroup of Σn acting naturally on [n], and let PG := {cσ | σ ∈ G} be the
set of all permutation matrices induced by the elements of G. Then PG is clearly a finite 
subgroup of GLn(R) isomorphic to G. For σ ∈ G and i ∈ [n], we have (cσ)ii = δ(i)σ,i. 
Thus (cσ)ii = 1R if and only if (i)σ = i. Hence i is a PG-free point if and only if 
{σ ∈ G | (i)σ = i} = 1G, that is, i is a PG-free point if and only if the stabilizer stG(i)
of i under G is trivial. In this case, we also say that i is a G-free point. If G = 〈σ〉 for 
σ ∈ Σn, then G-free points will simply be called σ-free points. If Xi is the content of σi

for 1 ≤ i ≤ s, then Xi forms a G-orbit, |Xi| = λi and [n] =
⋃s

i=1 Xi. Moreover, j ∈ Xi

is a σ-free point if and only if the order of σ is just λi. This implies that there is a σ-free 
point in [n] if and only if there is some λj such that λi|λj for all 1 ≤ i ≤ s.

Clearly, G also acts on Mn(R) by

Mn(R) ×G −→ Mn(R), (aij)σ := (a(i)σ,(j)σ), (aij) ∈ Mn(R), σ ∈ G.

Since cσac−1
σ = (

∑n
i=1 ei,(i)σ)(

∑
p,q apqepq)(

∑n
j=1 ej,(j)σ−1) =

∑
ij a(i)σ,(j)σeij = aσ for 

a = (apq) ∈ Mn(R), we have Sn(PG, R) = {a ∈ Mn(R) | aσ = a, σ ∈ G} = Mn(R)G, the 
fixed ring of G in Mn(R). For brevity, we write Sn(G, R) for Sn(PG, R), and Sn(σ, R)
for Sn(〈σ〉, R) if σ ∈ Σn.

Corollary 3.9. Let R be a ring and G be a subgroup of Σn with a G-free point. Then
(1) Sn(G, R) ⊆ Mn(R) is a G-Galois extension. Particularly, a separable Frobenius 

extension.
(2) If |G| is invertible in a ring R, then

(i) Sn(G, R) ⊆ Mn(R) is a split extension, and global and dominant dimensions of 
Sn(G, R) are the same as the ones of R, respectively.

(ii) Sn(G, R) is semisimple if R is semisimple.

Note that the condition on G = 〈σ〉 in Corollary 3.9 is satisfied for σ : i �→ n + 1 − i. 
Thus Corollary 3.9 extends the first statement of [20, Theorem (1), p.318].

Having considered the centralizers of invertible matrices in Theorem 1.2, we next 
investigate the centralizers of not necessarily invertible matrices.

Recall that a matrix in Mn(R) is called a Jordan-similar matrix if it is similar to a 
Jordan-block matrix by a matrix in GLn(R). As is known, every square matrix over an 
algebraically closed field is a Jordan-similar matrix.

Now, let c be a Jordan-block matrix as in (†), say

c = diag(Jb1
1 , Jb2

2 , · · · , Jbs
s ) ∈ Mn(R),

with Jordan blocks Jj = [r, 1, 0, · · · , 0] ∈ Mλj
(R) for 1 ≤ j ≤ s and r ∈ Z(R), where Jj

appears bj times and λ1 > λ2 > · · · > λs.
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For 1 ≤ i, j ≤ ms, let ρij := λg(i) + λg(j) − λ1. Further, we define a map Eij :
Mλg(i)×λg(j)(R) → Λ̃ij of R-modules as follows. If ρij ≤ 0, we set Eij = 0. If ρij > 0, we 
define

Eij : Mλg(i)×λg(j)(R) −→ Λ̃ij , a := (akl) �→
ρij∑
p=1

ρij−p+1∑
u=1

aλg(i)−u+1,ρij−p+1−u+1G
p
ij ∈ Λ̃ij .

Then Eij is a homomorphism of R-modules. Next, we extend Eij to a map Ē from 
Mn(R) to Λ by setting

Ē : Mn(R) −→ Λ, (Aij)ms×ms
�→

(
(Aij)Eij

)
=

∑
1≤i,j≤ms

(
(Aij)Eij

)
ϕij ,

where Aij ∈ Mλg(i)×λg(j)(R) for 1 ≤ i, j ≤ ms. This map has the property.

Lemma 3.10. Let c = diag(Jb1
1 , Jb2

2 , · · · , Jbs
s ) ∈ Mn(R) be a Jordan-block matrix with 

Jordan blocks Jj = [r, 1, 0, · · · , 0] ∈ Mλj
(R) for 1 ≤ j ≤ s and r ∈ Z(R), where Jj

appears bj times and λ1 > λ2 > · · · > λs. Then
(1) Ē is a homomorphism of Λ-Λ-bimodules.
(2) If a = (auv) ∈ Mn(R) and 1 ≤ i ≤ n, then

(i) e11(eλ1,ia)Ē = e1ia, that is, e11(
∑n

p=1 aipeλ1,p)Ē =
∑n

p=1 aipe1p.
(ii) (aei1)Ēeλ1,1 = aei1, that is, (

∑n
p=1 apiep1)Ēeλ1,1 =

∑n
p=1 apiep1.

(3) If there exists an n × n matrix z ∈ Mn(R) such that (z)Ē = 1 and za = az for all 
a ∈ Λ, then c = rIn.

Proof. (1) The map Ē is additive because each Eij is additive. Further, we prove

(xa)Ē = x(a)Ē and (ax)Ē = (a)Ēx for any x ∈ Λ and a ∈ Mn(R).

This is equivalent to saying that (XikAkj)Eij = Xik(Akj)Ekj for 1 ≤ i, k, j ≤ ms, Xik ∈
Λ̃ik and Akj ∈ Mλg(k)×λg(j)(R).

Indeed, let l := max{i, k}. Then λg(l) = min{λg(i), λg(k)} = θik and ρlj ≤ ρij . We 

may write Xik = 
∑λg(l)

p=1 xλg(l)−p+1G
p
ij ∈ Λ̃ik and Akj = (auv) ∈ Mλg(k)×λg(j)(R). Then

XikAkj = (
λg(l)∑
p=1

xλg(l)−p+1

p∑
w=1

ep−w+1,λg(k)−w+1)(
λg(k)∑
q=1

λg(j)∑
v=1

aqveqv)

=
λg(l)∑
p=1

p∑
w=1

λg(k)∑
q=1

λg(j)∑
v=1

xλg(l)−p+1aqvδλg(k)−w+1,qep−w+1,v

=
λg(j)∑ λg(l)∑ p∑

xλg(l)−p+1aλg(k)−w+1,vep−w+1,v (by Lemma 2.8)

v=1 p=1 w=1
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=
λg(j)∑
v=1

λg(l)∑
u=1

λg(l)−u+1∑
w=1

xλg(l)−(u+w−1)+1aλg(k)−w+1,veuv.

We write XikAkj as a λg(i) × λg(j) matrix (buv) with the (u, v)-entry

buv =
λg(l)−u+1∑

w=1
xλg(l)−u+1−w+1aλg(k)−w+1,v

for 1 ≤ u ≤ λg(l) and 1 ≤ v ≤ λg(j), and other entries 0.
Next, we consider (XikAkj)Eij . By definition, if ρij ≤ 0, then (XikAkj)Eij = 0. 

Suppose ρij > 0. Then

(XikAkj)Eij =
ρij∑
p=1

ρij−p+1∑
t=1

bλg(i)−t+1,ρij−p+1−t+1G
p
ij .

Note that buv = 0 for u > λg(l). Let D := {(p, t) | 1 ≤ p ≤ ρij , 1 ≤ t ≤ ρij − p +1, λg(i) −
t + 1 ≤ λg(l)}. Then bλg(i)−t+1,ρij−p+1−t+1 = 0 for (p, t) /∈ D, and therefore

(XikAkj)Eij =
ρij∑
p=1

ρij−p+1∑
t=1

bλg(i)−t+1,ρij−p+1−t+1G
p
ij =

∑
(p,t)∈D

bλg(i)−t+1,ρij−p+1−t+1G
p
ij .

If D = ∅, then (XikAkj)Eij = 0. Now we take into account the case D 	= ∅. Let 
(p0, t0) ∈ D, that is, 1 ≤ p0 ≤ ρij , 1 ≤ t0 ≤ ρij − p0 + 1, λg(i) − t0 + 1 ≤ λg(l). It follows 
from λg(i) ≥ λg(l) that λg(i)−λg(l)+1 ≤ t0 ≤ ρij−p0+1. Then p0 ≤ ρij−λg(i)+λg(l) = ρlj . 
Hence 1 ≤ p0 ≤ ρlj and D = {(p, t) | 1 ≤ p ≤ ρlj , λg(i) − λg(l) + 1 ≤ t ≤ ρij − p + 1}. 
Conversely, if ρlj ≥ 1, then (1, ρij) ∈ D. Thus D 	= ∅ if and only if ρlj ≥ 1. So, if D 	= ∅, 
then

(XikAkj)Eij =
∑

(p,t)∈D

bλg(i)−t+1,ρij−p+1−t+1G
p
ij

=
ρlj∑
p=1

ρij−p+1∑
t=λg(i)−λg(l)+1

bλg(i)−t+1,ρij−p+1−t+1G
p
ij

=
ρlj∑
p=1

ρlj−p+1∑
q=1

bλg(l)−q+1,ρlj−p+1−q+1G
p
ij

=
ρlj∑
p=1

ρlj−p+1∑
q=1

q∑
w=1

xq−w+1aλg(k)−w+1,ρlj−p+1−q+1G
p
ij (by Lemma 2.8)

=
ρlj∑
p=1

ρlj−p+1∑
v=1

ρlj−p+1−v+1∑
w=1

xvaλg(k)−w+1,ρlj−p+1−v+1−w+1G
p
ij .
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Note that we always have ρlj ≤ ρij , and therefore the following holds always

(XikAkj)Eij =

⎧⎪⎨
⎪⎩

0 if ρlj < 1,
ρlj∑
p=1

ρlj−p+1∑
v=1

ρlj−p+1−v+1∑
w=1

xvaλg(k)−w+1,ρlj−p+1−v+1−w+1G
p
ij if ρlj ≥ 1.

It remains to consider Xik (Akj)Ekj . Firstly, (Akj)Ekj = 0 for ρkj ≤ 0 by definition. 
Assume ρkj > 0. Then

(Akj)Ekj =
ρkj∑
p=1

(
ρkj−p+1∑

u=1
aλg(k)−u+1,ρkj−p+1−u+1)Gp

kj .

Note that Xik =
∑λg(l)

p=1 xλg(l)−p+1G
p
ik ∈ Λ̃ik, (Akj)Ekj ∈ Λ̃kj and λg(l) + ρkj − λg(k) =

λg(l) + λg(k) + λg(j) − λ1 − λg(k) = ρlj . According to Lemma 2.4(2), if ρlj < 1, then 
Xik(Akj)Ekj = 0; if ρlj ≥ 1, then

Xik(Akj)Ekj =
ρlj∑
p=1

ρlj−p+1∑
v=1

(ρlj−p+1)−v+1∑
w=1

xvaλg(k)−w+1,(ρlj−p+1)−v+1−w+1G
p
ij .

Since we always have ρlj ≤ ρkj , it follows that

Xik(Akj)Ekj

=

⎧⎪⎨
⎪⎩

0 if ρlj < 1,
ρlj∑
p=1

ρlj−p+1∑
v=1

(ρlj−p+1)−v+1∑
w=1

xvaλg(k)−w+1,(ρlj−p+1)−v+1−w+1G
p
ij if ρlj ≥ 1.

Hence (XikAkj)Eij = Xik(Akj)Ekj holds for all 1 ≤ i, k, j ≤ ms, Xik ∈ Λ̃ik and 
Akj ∈ Mλg(k)×λg(j)(R). Thus (xa)Ē = x(a)Ē for any x ∈ Λ and a ∈ Mn(R). This shows 
that Ē is a homomorphism of Λ-modules. Similarly, we show that Ē is a homomorphism 
of right Λ-modules. Thus Ē is a homomorphism of Λ-Λ-bimodules.

(2) Now, we prove that the equality e11(eλ1,ia)Ē = e1ia holds for 1 ≤ i ≤ n. In fact, 
the matrix eλ1,ia has the λ1-th row equal to the i-th row of a, and the other rows equal 
to 0, that is,

eλ1,ia =
n∑

p=1
aipeλ1,p =

ms∑
j=1

(
λg(j)∑
v=1

ai,ng(j)h(j)−λg(j)+veλ1v)ϕ1j .

So eλ1,ia can be written as an ms ×ms block matrix with 
∑λg(j)

v=1 ai,ng(j)h(j)−λg(j)+veλ1v

in the (1, j)-block for 1 ≤ j ≤ ms and 0 in the other blocks. Then (eλ1,ia)Ē =∑ms

j=1((
∑λg(j)

v=1 ai,ng(j)h(j)−λg(j)+veλ1v)E1j)ϕ1j and
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e11(eλ1,ia)Ē =
ms∑
j=1

(e11(
λg(j)∑
v=1

ai,ng(j)h(j)−λg(j)+veλ1v)E1j)ϕ1j (by the definition of E1j)

=
ms∑
j=1

(
λg(j)∑
p=1

ai,ng(j)h(j)−p+1e1,λg(j)−p+1)ϕ1j

=
ms∑
j=1

(
λg(j)∑
w=1

ai,ng(j)h(j)−λg(j)+we1w)ϕ1j (by the definition of ϕ1j)

=
ms∑
j=1

λg(j)∑
w=1

ai,ng(j)h(j)−λg(j)+we1,ng(j)h(j)−λg(j)+w

=
n∑

p=1
aipe1p

= e1ia.

The second last equality is due to [n] = {ng(j)h(j)−λg(j)+w | 1 ≤ j ≤ ms, 1 ≤ w ≤ λg(j)}. 
Similarly, we show (aei1)Ēeλ1,1 = aei1 for 1 ≤ i ≤ n.

(3) We write z ∈ Mn(R) as an ms×ms block matrix z = (Zij) with Zij ∈ Mλg(i)×λg(j)

for 1 ≤ i, j ≤ ms. For 1 ≤ i ≤ ms, we write Zii = (zuv) ∈ Mλg(i)(R). It follows from 
(Z)E = 1 that (Zii)Eii = Iλg(i) , that is,

(∗) (Zii)Eii =
ρii∑
p=1

(
ρii−p+1∑

u=1
zλg(i)−u+1,ρii−p+1−u+1)Gp

ii = Iλg(i) = G
λg(i)
ii .

Since ρii = 2λg(i) − λ1 ≤ λg(i) and {Gp
ii | 1 ≤ p ≤ ρii} is an R-basis of Λ̃ii, we obtain 

ρii = λg(i), and therefore λg(i) = λ1 for 1 ≤ i ≤ ms. Particularly, it follows from 
g(ms) = s that λs = λg(ms) = λ1. This implies s = 1 by our assumption on λi for 
1 ≤ i ≤ s. Hence c is a block matrix with all blocks of the same size. Moreover, by 
comparing the coefficients of Gλ1

ii in (∗), we deduce

zλ1,1 = 1R.

Next, we show that each of these blocks is in fact a 1 ×1 matrix. For an m1×m1 block 
matrix a = (Aij) ∈ Λ with Aij ∈ Λ̃ij , za = (

∑m1
p=1 ZipApj) and az = (

∑m1
p=1 AipZpj). 

Thus the condition za = az for all a ∈ Λ is equivalent to saying that 
∑m1

p=1 ZipApj =∑m1
p=1 AipZpj holds for all Apj ∈ Λ̃pj , Ajp ∈ Λ̃jp, 1 ≤ p, i, j ≤ m1. In particular, for 

1 ≤ i ≤ m1, if Aip = 0 and Api = 0 for 1 ≤ p 	= i ≤ m1, we get ZiiAii = AiiZii for all 
Aii ∈ Λ̃ii. Now, we write Aii = [a1, a2, · · · , aλ1 ] =

∑λ1
p=1

∑p
q=1 aλ1−p+1ep−q+1,λ1−q+1. 

Then
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AiiZii =
∑

1≤u,v≤λ1

λ1∑
k=u

ak−u+1zkveuv, and

ZiiAii =
∑

1≤u,w≤λ1

λ1∑
p=λ1−w+1

zu,p−(λ1−w)aλ1−p+1euw.

Suppose λ1 ≥ 2. Then (AiiZii)λ1−1,1 = a2zλ11 + a1zλ1−1,1 and (ZiiAii)λ1−1,1 =
zλ1−1,1a1. Specially, if a1 = a2 = 1, then it follows from ZiiAii = AiiZii that zλ11 = 0. 
This contradicts to zλ11 = 1. Thus λ1 = 1 and each block is a 1 × 1 matrix. This means 
c = rIn. �
Theorem 3.11. Suppose that R has no zero-divisors. Let c ∈ Mn(R) be a Jordan-similar 
matrix with all eigenvalues in Z(R). Then

(1) Sn(c, R) ⊆ Mn(R) is a separable Frobenius extension.
(2) Sn(c, R) ⊆ Mn(R) is a split extension if and only if c is similar to diag(r1In1 ,

r2In2 , · · · , rtInt
) with ri 	= rj for 1 ≤ i 	= j ≤ t, nj ≥ 1 and 

∑t
j=1 nj = n.

(3) Sn(c, R) is semisimple if and only if R is semisimple and c is similar to 
diag(r1In1 , r2In2 , · · · , rtInt

), where ri 	= rj for 1 ≤ i 	= j ≤ t, nj ≥ 1 and 
∑t

j=1 nj = n.

Proof. By Lemma 3.6, we may assume c = diag(c1, c2, . . . , ct) as in (††). Recall that 
τ0 := 0, τi :=

∑i
p=1 np and ni :=

∑si
p=1 bipλip for 1 ≤ i ≤ t with 

∑t
p=1

∑np

v=1 τp−1 +
v = n (see the end of Section 2). The ring Sn(c, R) is isomorphic to the ring 
diag(Sn1(c1, R), Sn2(c2, R), . . . , Snt

(ct, R)) with 
∑

j nj = n. We denote Snj
(cj , R) by Λj .

For 1 ≤ j ≤ t, we define a homomorphism of R-modules:

ψj : Mnj
(R) −→ Mn(R),

∑
1≤u,v≤nj

xuveuv �→
∑

1≤u,v≤nj

xuveτj−1+u,τj−1+v,

which sends x = (xuv) ∈ Mnj
(R) to a t × t block matrix in which x is in the (j, j)-

block of size nj × nj and 0 in (p, q)-block of size np × nq with (p, q) 	= (j, j). Clearly, 
(e11)ψj = eτj−1+1,τj−1+1 ∈ Mn(R), (a1)ψj(a2)ψj = (a1a2)ψj for a1, a2 ∈ Mnj

(R) and 
(Mnj

(R))ψj ⊆ εjMn(R)εj , where 1 =
∑t

p=1 εp is a decomposition of 1 into pairwise 
orthogonal idempotents in Mn(R) (see Section 2). Particularly, for 1 ≤ j, l ≤ t and 
x ∈ Mnl

(R),

(∗) (e11)ψj(x)ψl = (e11)ψjεjεl(x)ψl = δjl(e11)ψl(x)ψl = δjl(e11x)ψl.

Since the Jordan blocks in cj have the same eigenvalues, we have a homomorphism 
Ej : Mnj

(R) → Λj of Λj-Λj-bimodules as defined in Lemma 3.10 (see the definition of 
Ē). Further, we define a map

E : Mn(R) −→ Sn(c,R),



238 C.C. Xi, J.B. Zhang / Linear Algebra and its Applications 622 (2021) 215–249
(Auv) �→ diag((A11)E1, (A22)E2, . . . , (Att)Et) =
t∑

p=1
(App)Epψp,

where (Auv) is a t × t block matrix with the block Auv ∈ Mnu×nv
(R) for 1 ≤ u, v ≤ t. 

Clearly, E is a homomorphism of Sn(c, R)-Sn(c, R)-bimodules.
Let

xi :=
t∑

p=1
ei,τp−1+1, yi :=

t∑
p=1

eτp−1+λp1,i ∈ Mn(R), 1 ≤ i ≤ n.

(1) We show that (E, xi, yi) is a Frobenius system. Since E is a homomorphism
of Sn(c, R)-Sn(c, R)-bimodules, it remains to verify that 

∑n
i=1 xi(yia)E = a and ∑n

i=1(axi)Eyi = a for any a = (apq) ∈ Mn(R). Actually,

(∗∗)
n∑

i=1
xi(yia)E =

n∑
i=1

∑
1≤p,q≤t

ei,τp−1+1(eτq−1+λq1,ia)E.

For 1 ≤ i ≤ n and 1 ≤ p ≤ t, ei,τp−1+1(eτq−1+λq1,ia)E is an n × n matrix with the i-th 
row equal to the τp−1 + 1-th row of (eτq−1+λq1,ia)E and other rows equal to 0, while 
eτq−1+λq1,ia is a matrix which has the (τq−1 +λq1)-th row equal to the i-th row of a and 
other rows equal to 0. Thus eτq−1+λq1,ia can be written as a t × t block matrix with 0
in the (j, j)-block of size nj × nj for 1 ≤ j 	= q ≤ t, and 

∑nq

v=1 ai,τq−1+veλq1,v in the 
(q, q)-block of size nq × nq. Then, by definition,

(eτq−1+λq1,ia)E =
∑
j �=q

(0)Ejψj + (
nq∑
v=1

ai,τq−1+veλq1,v)Eqψq = (
nq∑
v=1

ai,τq−1+veλq1,v)Eqψq,

eτp−1+1,τp−1+1(eτq−1+λq1,ia)E = eτp−1+1,τp−1+1(
nq∑
v=1

ai,τq−1+veλq1,v)Eqψq

= (e11)ψp(
nq∑
v=1

ai,τq−1+veλq1,v)Eqψq (by (∗))

= δpq
(
e11(

nq∑
v=1

ai,τq−1+veλq1,v)Eq

)
ψq

(by Lemma 3.10(2))

= δpq(
nq∑
v=1

ai,τq−1+ve1v)ψq

= δpq

nq∑
v=1

ai,τq−1+veτq−1+1,τq−1+v,
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and therefore the equality (∗∗) runs as follows:

n∑
i=1

xi(yia)E =
n∑

i=1

∑
1≤p,q≤t

(ei,τp−1+1eτp−1+1,τp−1+1)(eτq−1+λq1,ia)E

=
n∑

i=1

∑
1≤p,q≤t

ei,τp−1+1
(
δpq

nq∑
v=1

ai,τq−1+veτq−1+1,τq−1+v

)

=
n∑

i=1

t∑
q=1

nq∑
v=1

ai,τq−1+vei,τq−1+v

(by [n] = {τq−1 + v ∈ N | 1 ≤ q ≤ t, 1 ≤ v ≤ nq})
=

∑
1≤i,u≤n

aiueiu = a.

Similarly, 
∑n

i=1(axi)Eyi = a. Thus Sn(c, R) ⊆ Mn(R) is a Frobenius extension by 
Lemma 3.2(1).

To complete the proof of (1), it remains to prove that the Frobenius extension 
Sn(c, R) ⊆ Mn(R) is separable. By Lemma 3.2(2), we have to find an element d ∈ Mn(R)
satisfying the conditions in Lemma 3.2(2).

Let bj := b1j and λj := λ1j for 1 ≤ j ≤ s1. Then n1 = ns1bs1
is the size of 

c1. We define Di :=
∑λg(i)

p=1 Gp
ii = [1, 1, . . . , 1] ∈ Mλg(i)(R) for 1 ≤ i ≤ ms1 , d̃ :=

diag(D1, D2, . . . , Dms1
) =

∑ms1
i=1 (Di)ϕii ∈ Mn1(R) and d := (d̃)ψ1 ∈ Mn(R). We show 

that d is a desired element in Mn(R). In fact, the condition da = ad for all a ∈ Λ is 
equivalent to saying that DiAij = AijDj holds for all Aij ∈ Λ̃ij and 1 ≤ i, j ≤ ms. 
We may write Aij =

∑θij
q=1 aθij−q+1G

q
ij ∈ Λ̃ij . It follows from Lemma 2.4(2) and 

λg(i) + θij − λg(i) = θij ≥ 1 that

DiAij =
θij∑
u=1

θij−u+1∑
v=1

a(θij−u+1)−v+1G
u
ij =

θij∑
u=1

θij−u+1∑
w=1

awG
u
ij = AijDj

for 1 ≤ i, j ≤ ms. This means da = ad for all a ∈ Λ.
Now we show 

∑n
w=1 xwdyw = In. It follows from d = (d̃)ψ1 ∈ ε1Mn(R)ε1, ew,τu−1+1 =

ew,τu−1+1εu and eτu−1+λu1,w = εueτu−1+λu1,w for 1 ≤ w ≤ n, 1 ≤ u ≤ t that

n∑
w=1

xwdyw =
n∑

w=1
(

t∑
u=1

ew,τu−1+1)
(
(d̃)ψ1

)
(

t∑
v=1

eτv−1+λv1,w)

=
n∑

w=1

t∑
u=1

ew,τu−1+1εu(ε1(d̃)ψ1ε1)
t∑

v=1
εveτv−1+λv1,w

=
n∑ ∑

δu1δ1vew1(d̃)ψ1eλ11,w =
n∑

ew1e11(d̃)ψ1eλ11,λ11eλ11,w
w=1 1≤u,v≤t w=1
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=
n∑

w=1
ew1(e11d̃eλ11,λ11)ψ1eλ11,w =

n∑
w=1

ew1(e11d̃eλ1,λ1)ψ1eλ1,w.

Further, In1 =
∑ms1

i=1 fi is a decomposition of In1 into pairwise orthogonal idempotents 
in Mn1(R), (Di)ϕii = fi(Di)ϕiifi, d̃ =

∑ms1
i=1 (Di)ϕii =

∑ms1
i=1 fi(Di)ϕiifi and e11 =

e11f1, eλ1,λ1 = f1eλ1,λ1 for 1 ≤ i ≤ ms1 . Thus

e11d̃eλ1,λ1 = (e11f1)(
ms1∑
i=1

fi(Di)ϕiifi)(f1eλ1,λ1)

=
ms1∑
i=1

δ1ie11(Di)ϕiieλ1,λ1 = e11(D1)ϕ11eλ1,λ1 .

Since D1 has 1 in the (1, λ1)-entry, (D1)ϕ11 has 1 in its (1, λ1)-entry. Therefore 
e11(D1)ϕ11eλ1,λ1 = e1λ1 and

n∑
w=1

xwdyw =
n∑

w=1
ew1(e11d̃eλ1,λ1)ψ1eλ1,w =

n∑
w=1

ew1(e1λ1)ψ1eλ1,w

=
n∑

w=1
ew1e1λ1eλ1,w =

n∑
w=1

eww = In.

By Lemma 3.2(2), the Frobenius extension Λ ⊆ Mn(R) is separable.
(2) Now, we prove that Sn(c, R) ⊆ Mn(R) is split if and only if c = diag(r1In1 , r2In2 ,

· · · , rtInt
), where ri ∈ Z(R) and ri 	= rj for 1 ≤ i 	= j ≤ t and 

∑t
j=1 nj = n.

If c = diag(r1In1 , r2In2 , · · · , rtInt
) with ri ∈ Z(R) and ri 	= rj for i 	= j, then 

Sni
(ci, R) = Mni

(R) and Ei = id : Sni
(ci, R) → Mni

(R) for 1 ≤ i ≤ t. Clearly, (In)E =
diag ((In1)E1, (In2)E2, · · · , (Int

)Et) = In. Then Sn(c, R) ⊆ Mn(R) is split by (1) and 
Lemma 3.2(2).

Conversely, if Sn(c, R) ⊆ Mn(R) is split, then it follows from (1) and Lemma 3.2(2) 
that there exists a t ×t block matrix z = (Zij) with Zij ∈ Mni×nj

(R) such that (z)E = In
and az = za for all a = diag {a1, a2, · · · , at} ∈ Sn(c, R) with ai a matrix in Mni

(R) for 
1 ≤ i ≤ t. Since (z)E = diag((Z11)E1, (Z22)E2, · · · , (Ztt)Et) = In, we have (Zii)Ei = Ini

for 1 ≤ i ≤ t. Note that the condition az = za for all a ∈ Sn(c, R) is equivalent to the 
condition aiZij = Zijaj for all ai ∈ Sni

(ci, R), aj ∈ Snj
(cj , R), 1 ≤ i, j ≤ t. In particular, 

Ziiai = aiZii for all ai ∈ Sni
(ci, R). By Lemma 3.10(3), ci = riIni

for 1 ≤ i ≤ t. By 
assumption on c, the eigenvalue of ci is not equal to the eigenvalue of cj for 1 ≤ i 	= j ≤ t. 
Thus c = diag(r1In1 , r2In2 , · · · , rtInt

) with ri ∈ Z(R) and ri 	= rj for 1 ≤ i 	= j ≤ t.
(3) If c = diag(r1In1 , r2In2 , · · · , rtInt

) and define ci = riIni
, then Sni

(ci, R) =
Mni

(R). If R is semisimple, then Sni
(ci, R) = Mni

(R) is semisimple for 1 ≤ i ≤ t. 
Thus Sn(c, R), as a product of these Sni

(ci, R), is semisimple. Conversely, if Sn(c, R) is 
semisimple, then Sni

(ci, R) is semisimple by Lemma 2.7(2) for 1 ≤ i ≤ t. To prove R is 
semisimple and ci = riIni

for 1 ≤ i ≤ t, it is enough to prove the following claim:
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Let c be of the form in (†) (see Section 2). If Sn(c, R) is semisimple, then R is semisim-
ple and c = rIn. It follows from Lemma 2.6(1) that fiSn(c, R)fi 
 R[x]/(xλg(i)) is 
semisimple for 1 ≤ i ≤ ms. This yields that R is semisimple and λg(i) = 1 for 1 ≤ i ≤ ms. 
In this case, λ1 = 1, s = 1 and c = rIn. The claim follows. This also completes the proof 
of (3). �

Remark that, for any unitary ring R and any subset C of matrices in Mn(Z(R)), the 
extension Sn(C, R) ⊆ Mn(R) is separable. This follows from the facts: (1) If R1 ⊆ R2 ⊆
R3 are extensions of rings such that R1 ⊆ R3 is separable (semisimple), then R2 ⊆ R3
is separable (semisimple). (2) The extension R = {rIn | r ∈ R} ⊆ Mn(R) is separable. 
Clearly, if the entries of c ∈ C lie in Z(R), then (rIn)c = c(rIn) and therefore Sn(C, R)
contains R = {rIn | r ∈ R}.

From Theorem 3.11, we get the corollary.

Corollary 3.12. Let k be an algebraically closed field.
(1) Every principal centralizer matrix extension over k is a separable Frobenius exten-

sion.
(2) If c ∈ Λ := Mn1(k) × Mn2(k) × · · · × Mns

(k), then S(c, Λ) ⊆ Λ is a separable 
Frobenius extension.

Proof. (1) If k is an algebraically closed field, then every square matrix in Mn(k) is a 
Jordan-similar matrix. Thus Corollary 3.12(1) follows immediately from Theorem 3.11.

(2) Let c = (ci) ∈ Λ with ci ∈ Mni
(R) for 1 ≤ i ≤ ns. Then S(c, Λ) = S(c1, Mn1(k)) ×

S(c2, Mn2(k)) × · · · × S(cs, Mns
(k)). By (1), S(ci, Mni

(k)) ⊆ Mni
(k) is a Frobenius 

extension for 1 ≤ i ≤ s. Then S(c, Λ) ⊆ Λ is a Frobenius extension by Lemma 3.4 �
Finally, we note that, in a general context, the extensions Sn(C, R) ⊆ Mn(R) for C

subsets of Mn(R) do not have to be Frobenius extensions.

Remark 3.13. (1) Let R be a local ring and n ≥ 2 be an integer such that nR = 0. If 
2 � n, then the extension Sn(Σn, R) ⊆ Mn(R) is not a Frobenius extension, where Σn is 
the symmetric group of degree n.

In fact, if γn denotes the n × n matrix with all entries equal to 1, then it follows 
from nR = 0 that γ2

n = 0. Thus Sn(Σn, R) = RIn + Rγn 
 R[X]/(X2). Since finitely 
generated projective modules over a local ring must be free and of finite rank, we see 
that finitely generated nonzero projective Sn(Σn, R)-modules are also free R-modules 
of R-rank 2m for m ≥ 1. Due to 2 � n, we deduce that Mn(R) cannot be a projective 
Sn(Σn, R)-module. Thus Sn(Σn, R) ⊆ Mn(R) is not a Frobenius extension.

(2) If C contains two matrices in Mn(R) (or if G has no G-free point), then Sn(C, R) ⊆
Mn(R) (or Sn(G, R) ⊆ Mn(R)) may not be a Frobenius extension.

Indeed, suppose R is a field of characteristic 3. Due to Σ3 = 〈(123), (13)〉, it follows for 
C := {c(123), c(13)} ⊆ M3(R) that S3(C, R) = S3(Σ3, R) = RI3 + Rγ3. Then S3(C, R) ⊆
M3(R) cannot be a Frobenius extension by (1). Note that Σ3 has no free point in {1, 2, 3}.
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4. Cellular algebras

In this section, we first recall some basic definition on cellular algebras and then prove 
Theorem 1.1.

Throughout this note, R stands for a commutative ring with identity. Now, we state 
the definition of cellular algebras introduced by Graham and Lehrer (see [6]).

Definition 4.1. [6] Let R be a commutative ring. A unitary R-algebra A is called a cellular 
algebra with cell datum (P, M, C, ι) if the following conditions are satisfied:

(C1) P is a finite partially ordered, and for each p ∈ P , there is associated a finite set 
M(p) such that {Cp

ij | p ∈ P, i, j ∈ M(p)} is an R-basis of the algebra A.
(C2) ι : A → A is an R-involution (that is an anti-automorphism of R-algebra A of 

order 2) such that Cp
ij is mapped to Cp

ji under ι.
(C3) For a ∈ A, p ∈ P , i, j ∈ M(p),

aCp
ij =

∑
u∈M(p)

ra(u, i)Cp
uj + r′

where the coefficient ra(u, i) ∈ R does not depend on j and where r′ is a linear combi-
nation of basis elements Cq

st with q strictly smaller than p.

We remark that cellular algebras can also be described in terms of ring-theoretic lan-
guages (see [13] for details). Cellular algebras cover many important examples of algebras 
such as Hecke algebras, Brauer algebras and Temperley-Lieb algebras, and reduce many 
problems in representation theory to the ones in linear algebra (see [6]).

For a cellular algebra A and p ∈ P , we denote by C≤p the R-module spanned by all Cq
ij

with q ≤ p and i, j ∈ M(q). By linearization of P , we may assume that P = {1, 2, · · · , n}
with the natural ordering. Following [13], the chain C≤1 ⊂ C≤2 ⊂ · · · ⊂ C≤n = A is
called a cell chain of A.

Note that the cellularity of algebras is not preserved by Morita equivalences. This 
means that we cannot get cellularity of an algebra by passing to the one of its basic 
algebra.

Recall that an ideal I of a finite-dimensional algebra A over a field is called a heredity 
ideal if I = AeA for e2 = e ∈ A, erad(A)e = 0 and AAeA is projective. Following [2], 
a finite-dimensional algebra A is said to be quasi-hereditary if there is a chain of ideals: 
0 = I0 ⊂ I1 ⊂ · · · ⊂ Im = A such that Ii/Ii−1 is a heredity ideal in A/Ii−1. Such a 
chain is then called a heredity chain of the quasi-hereditary algebra A. Quasi-hereditary 
algebra appears widely in representation theory of Lie algebras and algebraic groups 
(see [2]).

First, we consider the cellularity of principal centralizer matrix algebras of special 
form where all blocks have the same eigenvalues.

Let c = diag(Jb1
1 , Jb2

2 , · · · , Jbs
s ) ∈ Mn(R) be a Jordan-block matrix with Jordan blocks 

Ji = [r, 1, 0, · · · , 0] ∈ Mλi
(R) of different sizes λi, r ∈ Z(R), 1 ≤ i ≤ s. Here, Jbi

i means 
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that the block Ji appears bi times. We assume λ1 > λ2 > · · · > λs and keep all notations 
introduced in Section 2.

For each p ∈ [λ1], let l(p) be the biggest l(p) ∈ [s] such that λl(p) ≥ p. We define 
M(p) := [ml(p)]. Recall that g(i) is the smallest g(i) ∈ [s] such that i ≤ mg(i) for 
1 ≤ i ≤ ms and h(i) := i −mg(i)−1 ∈ [bg(i)].

The following lemma is useful in later proofs.

Lemma 4.2. (1) For 1 ≤ p, q ≤ λ1, if q ≤ p, then l(q) ≥ l(p) and M(q) ⊇ M(p).
(2) If 1 ≤ u ≤ s and 1 ≤ p ≤ λ1, then p ≤ λu if and only if l(p) ≥ u. In particular, 

l(λu) = u.
(3) If 1 ≤ i ≤ ms, then i ∈ M(p) if and only if g(i) ≤ l(p) if and only if λg(i) ≥ p.
(4) g(mu) = u for 1 ≤ u ≤ s.

Proof. (1) By definition, we obtain p ≤ λl(p). As q ≤ p, we have q ≤ λl(p). The choice 
of l(q) implies l(q) ≥ l(p). Since m1 < m2 < · · · < ms, we get ml(q) ≥ ml(p). Therefore 
M(q) = [ml(q)] ⊇ [ml(p)] = M(p).

(2) If p ≤ λu, then l(p) ≥ u by the choice of l(p). Conversely, if l(p) ≥ u, then it follows 
from λ1 > λ2 > · · · > λs that λl(p) ≤ λu. By the definition of l(p), we have p ≤ λl(p), 
and therefore p ≤ λu. Specially, if p = λu, then l(λu) ≥ u. On the other hand, by the 
definition of l(λu), we deduce λl(λu) ≥ λu. It then follows from λ1 > λ2 > · · · > λs that 
l(λu) ≤ u. Hence l(λu) = u.

(3) By definition, g(i) is the smallest g(i) ∈ [s] such that i ≤ mg(i). If i ≤ ml(p), 
that is i ∈ M(p), then g(i) ≤ l(p). Conversely, if g(i) ≤ l(p), then i = mg(i)−1 + h(i) ≤
mg(i)−1 + bg(i) = mg(i) ≤ ml(p) and i ∈ M(p). Hence i ∈ M(p) if and only if g(i) ≤ l(p). 
By (2), p ≤ λg(i) if and only if l(p) ≥ g(i). Thus (3) follows.

(4) By definition, mu ≤ mg(mu). Since m1 < m2 < · · · < ms, we conclude u ≤ g(mu). 
On the other hand, since g(mu) be the smallest g(mu) ∈ [s] such that mu ≤ mg(mu), it 
follows from mu ≤ mu that g(mu) ≤ u. Thus g(mu) = u. �

For i, j ∈ M(p), we define

Cp
ij :=

p∑
u=1

eng(i)h(i)−λg(i)+p−u+1,ng(j)h(j)−u+1 ∈ Mn(R),

that is, Cp
ij = (

∑p
u=1 ep−u+1,λg(j)−u+1)ϕij is an ms × ms block matrix with∑p

u=1 ep−u+1,λg(j)−u+1 in the (i, j)-block of size λg(i) × λg(j), and 0 in the (k, l)-block of 
size λg(k) × λg(l) if 1 ≤ k, l ≤ ms and (k, l) 	= (i, j) (see Section 2 for the definition of 
ϕij).

Lemma 4.3. Θ := {Cp
ij | p ∈ [λ1], i, j ∈ M(p)} is an R-basis of Sn(c, R).

Proof. By Lemma 2.6(3), Δ := {F p
ij | 1 ≤ i, j ≤ ms, 1 ≤ p ≤ min{λg(i), λg(j)}} is an 

R-basis of Sn(c, R). We shall show Θ = Δ.
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Note that for 1 ≤ i, j ≤ ms and 1 ≤ p ≤ λ1, if i, j ∈ M(p) and p ≤ min{λg(i), λg(j)}, 
then Cp

ij = F p
ij . To prove Θ = Δ, it is enough to show that, for 1 ≤ i, j ≤ ms and 

1 ≤ p ≤ λ1, we have i, j ∈ M(p) if and only if p ≤ min{λg(i), λg(j)}. But this is clear 
from Lemma 4.2(3). Hence Θ = Δ and {Cp

ij | p ∈ P, i, j ∈ M(p)} is an R-basis of 
Sn(c, R). �

For p, q ∈ [λ1], i, j ∈ M(p) and u, v ∈ M(q), by Lemmas 2.5 and 4.3, we have the 
formula

(�) Cq
uvC

p
ij =

{
δviC

p+q−λg(v)
uj if p + q − λg(v) ≥ 1,
0 if p + q − λg(v) < 1.

By using the R-basis of Sn(c, R), one may define an R-linear map

ι : Sn(c,R) −→ Sn(c,R), Cp
ij �→ Cp

ji, p ∈ [λ1], i, j ∈ M(p).

Clearly, ι is an isomorphism of R-modules and ι2 = id. Given p, q ∈ [λ1], i, j ∈ M(p), 
and u, v ∈ M(q), if p + q − λg(v) ≥ 1, then it follows from (�) that

(Cq
uvC

p
ij)ι = (δviC

p+q−λg(v)
uj )ι = δivC

q+p−λg(i)
ju = Cp

jiC
q
vu = (Cp

ij)ι(C
q
uv)ι.

If p + q − λg(v) < 1, then (Cq
uvC

p
ij)ι = (0)ι = 0 and there always holds Cp

jiC
q
vu = 0

by (�). This shows (Cq
uvC

p
ij)ι = 0 = Cp

jiC
q
vu. In summary, ι is an anti-automorphism of 

the R-algebra Sn(c, R). Thus ι is an involution of Sn(c, R).
We remark that the involution ι is not the transpose of matrices in general.

Lemma 4.4. Let c = diag(Jb1
1 , Jb2

2 , · · · , Jbs
s ) ∈ Mn(R) be a Jordan-block matrix with 

Jordan block Ji = [r, 1, 0, · · · , 0] ∈ Mλi
(R) for 1 ≤ i ≤ s and r ∈ Z(R), where Ji appears 

bi times and λ1 > λ2 > · · · > λs. Then Sn(c, R) is a cellular R-algebra with respect to 
the involution ι.

Proof. (1) Let P := {1, 2, · · · , λ1} with the natural ordering. By Lemma 4.3, {Cp
ij | p ∈

P, i, j ∈ M(p)} with M(p) = [ml(p)] is an R-basis of Sn(c, R).
(2) By definition, (Cp

ij)ι = (Cp
ji) for p ∈ P and i, j ∈ M(p).

(3) To verify Definition 4.1(C3), it is enough to check (C3) for a basis element a. Let 
p, q ∈ [λ1], i, j ∈ M(p), and u, v ∈ M(q). Then Cq

uvC
p
ij = δviC

p+q−λg(v)
uj if p +q−λg(v) ≥ 1

and 0 otherwise by (�). This means that we have to verify (C3) for the case p +q−λg(v) ≥
1. In this case, it follows from q ≤ λg(v) that the product can be rewritten as

Cq
uvC

p
ij = δviδq,λg(v)C

p
uj + δviδ

′
q,λg(v)

C
p+q−λg(v)
uj ,

where δ′st stands for the anti-Kronecker symbol, that is, δ′st = 0 if s = t and 1 if s 	= t. 
Note that if q 	= λg(v) then p + q − λg(v) < p and that the coefficients δg(v)g(i)δvi ∈ R do 
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not depend on j. Hence Cq
uvC

p
ij can be expressed in the desired form. Hence, according 

to Definition 4.1, Sn(c, R) is a cellular R-algebra with respect to the involution ι. �
In general, we have the result.

Theorem 4.5. If R is an integral domain and c is an n × n Jordan-similar matrix over 
R, then Sn(c, R) is a cellular R-algebra.

Proof. Since c is a Jordan-similar matrix in Mn(R), there is a Jordan-block matrix d
such that c is similar to d. Thanks to Lemma 2.1(1), we have Sn(c, R) 
 Sn(d, R) by an 
inner automorphism. Let

d = diag(Jb11
11 , Jb12

12 , · · · , Jb1s1
1s1 , Jb21

21 , Jb22
22 · · · , Jb2s2

2s2 , · · · , Jbt1
t1 , Jbt2

t2 · · · , Jbtst
tst ) ∈ Mn(R)

with Jij = [ri, 1, 0, . . . , 0] ∈ Mλij
(R) appearing bij times for 1 ≤ j ≤ si, 1 ≤ i ≤ t, 

λi1 > λi2 > · · · > λisi , ri ∈ Z(R), and ri 	= rj for i 	= j.
For 1 ≤ i ≤ t, we define ni :=

∑si
p=1 bipλip, di := diag(Ji1, · · · , Ji1, · · · , Jisi , · · · , Jisi)

∈ Mni
(R), and Λi := Sni

(di, R). Observe that di is a Jordan-block matrix with the same 
eigenvalue ri. It follows from Lemma 2.7(2) that Sn(d, R) is isomorphic to Λ1×Λ2×· · ·×
Λs as algebras. Further, by Lemma 4.4, each Λi is a cellular R-algebra with respect to 
an involution ιi. Now, we define an involution ι := ⊕t

i=1ιi : Sn(d, R) → Sn(d, R), (ai) �→
((ai)ιi) for ai ∈ Λi, 1 ≤ i ≤ t. Then Sn(d, R) is a cellular R-algebra with respect to the 
involution ι.

It follows from Sn(c, R) 
 Sn(d, R) that Sn(c, R) is a cellular algebra induced by the 
cellular structure of Sn(d, R). �

Consequently, we have the next corollary.

Corollary 4.6. Let R be an algebraically closed field.
(1) Every principal centralizer matrix algebra is a cellular R-algebra.
(2) If c ∈ Λ := Mn1(R) ×Mn2(R) × · · · ×Mns

(R) with ni ≥ 1 for all 1 ≤ i ≤ s, then 
S(c, Λ) is a cellular algebra.

Proof. (1) Every square matrix over an algebraically closed field is a Jordan-similar 
matrix. Thus every centralizer matrix algebra is a cellular R-algebra by Theorem 4.5.

(2) Let c = (c1, · · · , cs) ∈ Λ with ci ∈ Mni
(R). Then S(c, Λ) 
 S(c1, Mn1(R)) ×

S(c2, Mn2(R)) × · · · × S(cs, Mns
(R)). Since each S(ci, Mni

(R)) is a cellular algebra by 
(1), S(c, Λ) has a cellular algebra structure induced by S(ci, Mni

(R)) for 1 ≤ i ≤ s. �
Proof of Corollary 1.3. (1) is clear from Corollary 3.12(1).

(2) By a well-known theorem of Maschke, which says that kG is semisimple if and 
only if the ctaracteristic of k does not divide |G|, we have kG 
 Mn1(k) ×Mn2(k) ×· · ·×
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Mns
(k), where n1, n2, . . . , ns are the dimensions of all irreducible representations of kG. 

Now, (2) follows transparently from Corollary 4.6(2). �
With the help of general theory of cellular algebras, we can parameterize simple 

modules and describe quasi-heredity of principal centralizer matrix algebras.
We recall the following result on cellular algebras, which is taken from [6,13].

Lemma 4.7. Let A be a cellular algebra over a field R with an involution ι and cell chain 
0 = C0 ⊂ C1 ⊂ · · · ⊂ Ci ⊂ Cλ−1 ⊂ Cλ = A. Then the following hold.

(1) There is a natural bijective between isomorphism classes of simple A-modules and 
indices p ∈ {1, 2, · · · , λ} such that C2

p 	⊂ Cp−1.
(2) The given cell chain of A is a heredity chain (making A into a quasi-hereditary 

algebra) if and only if C2
p 	⊂ Cp−1 for all p if and only if λ equals the number of isomor-

phism classes of simple modules.

The following corollary describes the number of simple modules and quasi-heredity of 
principal centralizer matrix algebras.

Corollary 4.8. Let R be a field and c ∈ Mn(R) be a Jordan-similar matrix of the block 
type {(λ11, λ12, · · · , λ1s1), · · · , (λt1, λt2, · · · , λtst)}. Then

(1) Sn(c, R) has 
∑t

i=1 si non-isomorphic simple modules.
(2) Sn(c, R) is a quasi-hereditary algebra if and only if λij = si − j + 1 for 1 ≤ i ≤

t, 1 ≤ j ≤ si if and only if λi1 = si for 1 ≤ i ≤ t.

Proof. First, we prove Corollary 4.8 for the case that c is a Jordan-block matrix with the 
same eigenvalues, that is, t = 1 and c has a block type of the form {(λ1, λ2, · · · , λs)} with 
λ1 > λ2 > · · · > λs. By Lemma 2.1(1), we can write c = diag(Jb1

1 , Jb2
2 , · · · , Jbs

s ) ∈ Mn(R)
as in (†). By Lemma 4.4, Sn(c, R) is a cellular R-algebra with respect to the involution 
ι. We then have a cell chain 0 = C0 ⊂ C1 ⊂ · · · ⊂ Cp ⊂ · · · ⊂ Cλ1 , where Cp stands for 
the R-module spanned by all basis elements Cq

ij with q ≤ p and i, j ∈ M(q).
(1) By Lemma 4.7 (1), to prove that Sn(c, R) has exactly s non-isomorphic simple 

modules, it is sufficient to prove that there are exactly s indices p ∈ [λ1] such that 
C2

p 	⊂ Cp−1. In the following, we show that C2
p 	⊂ Cp−1 if and only if p = λl(p).

We first prove the sufficiency. Suppose p = λl(p). By Lemma 4.2(4), g(ml(p)) = l(p)
and λg(ml(p)) = λl(p) = p. Then it follows from (�) that

Cp
ml(p),ml(p)

Cp
ml(p),ml(p)

= C
p+p−λg(ml(p))
ml(p),ml(p) = Cp

ml(p),ml(p)
∈ C2

p\Cp−1,

that is, C2
p 	⊂ Cp−1.

Now, we show the necessity. Suppose C2
p 	⊂ Cp−1. According to (�), there exist u, v, w ∈

M(p) such that Cp
uvC

p
vw = C

p+p−λg(v)
uw /∈ Cp−1. Thus p + p −λg(v) = p and p = λg(v). By 
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Lemma 4.2(2), l(p) = l(λg(v)) = g(v) and p = λg(v) = λl(p). Hence, for p ∈ [λ1], we have 
C2

p 	⊂ Cp−1 if and only if p = λl(p).
By Lemma 4.2(2), λu = λl(λu) for all 1 ≤ u ≤ s. Thus {p ∈ [λ1] | p = λl(p)} = {λu |

1 ≤ u ≤ s}. Since λ1 > λ2 > · · · > λs, the set {λu | 1 ≤ u ≤ s} has exactly s elements. 
Thus Sn(c, R) has exactly s non-isomorphic simple Sn(c, R)-modules.

(2) By Lemma 4.7(2), that Sn(c, R) is a quasi-hereditary algebra is equivalent to the 
condition λ1 = s. Since λ1 > λ2 > · · · > λs, we know that λ1 = s if and only if 
λi = s − i + 1 for 1 ≤ i ≤ s.

Next, we deal with the general case of a Jordan-similar matrix c ∈ Mn(R). By 
Lemma 2.1(1), we may assume c = diag(c1, c2, · · · , ct) as in (††). Then Sn(c, R) is isomor-
phic to Sn1(c1, R) ×Sn2(c2, R) ×· · ·×Snt

(ct, R)) as algebras by Lemma 2.7(2). Since we 
have shown that Sni

(ci, R) has si non-isomorphic simple Sni
(ci, R)-modules for 1 ≤ i ≤ t, 

the number of non-isomorphic simple Sn(c, R)-modules is 
∑t

i=1 si. Clearly, Sn(c, R) is a 
quasi-hereditary algebra if and only if each Sni

(ci, R) is a quasi-hereditary algebra for 
1 ≤ i ≤ t, while Sni

(ci, R) is a quasi-hereditary algebra if and only if λij = si − j + 1
for 1 ≤ j ≤ si if and only if λi1 = si. This implies that Sn(c, R) is a quasi-hereditary 
algebra if and only if λij = si − j + 1 for all 1 ≤ i ≤ t, 1 ≤ j ≤ si if and only if λi1 = si
for 1 ≤ i ≤ t. Thus Corollary 4.8 follows. �

At this moment, let us display an example to illustrate the results in the paper.

Example 4.9. Let R be a field and c = diag(J1, . . . , J2, . . . , Js) ∈ Mn(R) be a Jordan-
block matrix with Jordan blocks Ji = [r, 1, 0, · · · , 0] ∈ Mλi

(R), 1 ≤ i ≤ s, and λ1 =
s, λ2 = s − 1, · · ·λs−1 = 2, λs = 1. In this case, Sn(c, R) is a basic, quasi-hereditary 
algebra by Corollary 4.8(2) and Lemma 2.6. Further, dimR(Sn(c, R)) = 1

6s(s +1)(2s +1)
and n = 1

2s(s + 1).

We will work out a presentation of Λ := Sn(c, R) in terms of quiver with relations. 
By Lemma 2.6, Λ has an R-basis F := {F p

ij | 1 ≤ i, j ≤ s, 1 ≤ p ≤ min{λi, λj}} with a 

complete set {Fλi
ii | 1 ≤ i ≤ s} of orthogonal primitive idempotent elements, and rad(Λ)

has an R-basis F1 := F\{Fλi
ii | 1 ≤ i ≤ s}. Moreover, we prove that rad(Λ)/rad2(Λ) has 

an R-basis Q1 := {Fλi
i−1,i, F

λi
i,i−1 | 1 < i ≤ s}.

(1) F1\Q1 ⊆ rad2(Λ). Suppose F p
ij ∈ F1\Q1. Then p ≤ min{λi, λj}. We consider the 

three cases.
(i) i < j. In this case, λi > λj . If j = i + 1, then it follows from Fλi+1

i,i+1 ∈ Q1 that 
p < λi+1. By Lemma 2.5, we have F p

ij = F p
i,i+1 = F p+1

i,i+1F
λi+1−1
i+1,i+1. As F p+1

i,i+1, F
λi+1−1
i+1,i+1 ∈ F1, 

we get F p
ij ∈ rad2(Λ). Similarly, if j > i + 1, then it follows from Fλi+1

i,i+1 ∈ F1 and 

F p
i+1,j ∈ F1 that F p

ij = F
λi+1
i,i+1F

p
i+1,j ∈ rad2(Λ).

(ii) i > j. In this case, λi < λj . If j = i − 1, then it follows from Fλi
i,i−1 ∈ Q1 that 

p < λi. By Lemma 2.5, F p
i,i−1 = F p+1

i,i−1F
λi−1−1
i−1,i−1 ∈ rad2(Λ). If j < i − 1, then Fλi−1

i−1,j ∈ F1

and F p
ij = F p

i,i−1F
λi−1
i−1,j ∈ rad2(Λ).
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(iii) i = j. In this case, we have p < λi from Fλi
ii ∈ Q1. Since λi = λi+1 + 1, this 

implies p ≤ λi+1. Then F p
ii = F p

i,i+1F
λi+1
i+1,i by Lemma 2.5. It follows from F p

i,i+1 ∈ F1 and 

F
λi+1
i+1,i ∈ F1 that F p

ij ∈ rad2(Λ).
(2) No element in Q1 belongs to rad2(Λ). In fact, for F q

uv, F
p
ij ∈ F1, the product 

F q
uvF

p
ij is either 0 or again an element of F1. This implies that Fw

kl ∈ rad2(Λ) if and 

only if Fw
kl = F q

uvF
p
ij for some F q

uv, F
p
ij ∈ F1. Suppose Fλk

k−1,k = F q
uvF

p
ij ∈ Q1 ∩ rad2(Λ)

for some F q
uv, F

p
ij ∈ F1. Then v = i, u = k − 1, j = k, q + p − λv = λk. Note that 

q ≤ min{λu, λv} ≤ λv and p ≤ min{λi, λj} ≤ λk. Thus 0 ≤ λk − p = q − λv ≤ 0. 
Therefore λk = p, q = λv, λk ≤ λv and λv ≤ λk−1. As λk +1 = λk−1, we have λv = λk−1

or λv = λk. This means v = k − 1 or v = k. If v = k − 1, then F q
uv = F

λk−1
k−1k−1 /∈ F1. If 

v = k, then i = v = k and F p
ij = Fλk

kk /∈ F1. The both cases contradict to the choices of 
F q
uv and F p

ij , respectively. Thus Fλk

k−1,k /∈ rad2(Λ). Similarly, Fλi
i,i−1 /∈ rad2(Λ). Therefore 

(2) holds and Q1 is an R-basis of rad(Λ)/rad2(Λ).
Now, we define fi := Fλi

ii for 1 ≤ i ≤ s, αi := F
λi+1
i,i+1 and βi := F

λi+1
i+1,i for 1 ≤ i ≤ s −1. 

Then fiαi = αifi+1 and fi+1βi = βifi for 1 ≤ i < s, βs−1αs−1 = 0 and αiβi = βi−1αi−1

for 1 < i < s. Thus Λ is isomorphic to the algebra given by the quiver with relations:

•
α11 2

•
β1

α2
•

β2
· · · •

αs−2
•

βs−2

αs−1 s
•

βs−1

, βs−1αs−1 = 0, αiβi = βi−1αı−1, 1 < i < s.

This is actually the Auslander algebra of R[X]/(Xs) which has applications in describing 
orbits of parabolic subgroups acting on their unipotent radicals (see [7]).

To end this section, we propose open questions related to the results in this paper.

Question 4.10. Let R be an arbitrary unitary ring, and let σ, τ be elements of the sym-
metric group Σn.

(1) Suppose that R is commutative. Is Sn(σ, R) always a cellular R-algebra?
(2) Is Sn(σ, R) ⊆ Mn(R) always a Frobenius extension?
(3) When are Sn(σ, R) and Sn(τ, R) derived equivalent?
(4) The canonical embedding R ⊆ Mn(R) is a Frobenius extension. How can one 

parameterize all intermediate rings S such that S ⊆ Mn(R) are Frobenius extensions?

Note that Question (2) still makes sense, though we have Remark 3.13. Also, the 
answer to (3) seems to depend only on numerical properties of the cycle types of σ
and τ .
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