Centralizer matrix algebras and symmetric polynomials of partitions

Changchang Xi ${ }^{\text {a }}$, Jinbi Zhang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, Capital Normal University, 100048 Beijing, PR China
${ }^{\text {b }}$ School of Mathematical Sciences, Peking University, 100871 Beijing, PR China

A R T I C L E I N F O

Article history:

Received 14 March 2022
Available online 26 July 2022
Communicated by Volodymyr
Mazorchuk

MSC:

primary 16W22, 16S50, 05A17
secondary $15 \mathrm{~A} 30,11 \mathrm{C} 08,16 \mathrm{~K} 99$

Keywords:
Centralizer algebras
Frobenius extension
Gorenstein algebra
Greatest common divisor
Invariant matrix algebra
Partition
Symmetric polynomial

Abstract

For a field R of characteristic $p \geq 0$ and a matrix c in the full $n \times n$ matrix algebra $M_{n}(R)$ over R, let $S_{n}(c, R)$ be the centralizer algebra of c in $M_{n}(R)$. We show that $S_{n}(c, R)$ is a Frobenius-finite, 1-Auslander-Gorenstein, and gendo-symmetric algebra, and that the extension $S_{n}(c, R) \subseteq$ $M_{n}(R)$ is separable and Frobenius. Further, we study the isomorphism problem of invariant matrix algebras. Let σ be a permutation in the symmetric group Σ_{n} and c_{σ} the corresponding permutation matrix in $M_{n}(R)$. We give sufficient and necessary conditions for the invariant algebra $S_{n}\left(c_{\sigma}, R\right)$ to be semisimple. If R is an algebraically closed field, we establish a combinatoric characterization of when two semisimple invariant R-algebras are isomorphic in terms of the cycle types of permutations.

© 2022 Elsevier Inc. All rights reserved.

Contents

1. Introduction 689
2. Centralizer matrix algebras 691
3. Proof of Theorem 1.1 696

[^0]4. Proof of Theorem 1.2 706
4.1. A new equivalence relation on partitions 706
4.2. Isomorphisms of invariant matrix algebras 713
Acknowledgment 716
References 716

1. Introduction

Let R be a unitary ring and n a natural number. We set $[n]:=\{1,2, \cdots, n\}$ and denote by Σ_{n} the symmetric group of permutations on $[n]$, by $M_{n}(R)$ the ring of $n \times n$ matrices over R and by $e_{i j}$ the matrix units of $M_{n}(R)$ for $i, j \in[n]$. The identity matrix in $M_{n}(R)$ is denoted by I_{n}.

For a nonempty set C of matrices in $M_{n}(R)$, we define the centralizer algebra of C by

$$
S_{n}(C, R):=\left\{a \in M_{n}(R) \mid a c=c a \text { for all } c \in C\right\}
$$

In case $C=\{c\}$, we write $S_{n}(c, R)$ for $S_{n}(\{c\}, R)$.
Given a subgroup G of Σ_{n}, we associate a set C_{G} of all permutation matrices c_{σ} with $\sigma \in G$, and define the G-invariant matrix ring over R of degree n by $S_{n}(G, R):=$ $S_{n}\left(C_{G}, R\right)$. We write $S_{n}(\sigma, R)$ for $S_{n}\left(c_{\sigma}, R\right)$.

Invariant algebras and rings can be traced back to the classical invariant theory (see [22]). If C consists of nilpotent matrices and R is an algebraically closed field, then the variety consisting of nilpotent matrices in $S_{n}(C, R)$ is of great interest in understanding properties of semisimple Lie algebras (see [16,17]). Note that $S_{n}(\sigma, R)$ is a generalization of centrosymmetric matrix algebras studied in [23]. As is known, centrosymmetric matrices have significant applications in Markov processes [21], engineering problems and quantum physics [6]. Centralizer algebras $S_{n}(c, R)$ include the Auslander algebra of $R[x] /\left(x^{n}\right)$ (see [24]), which plays a crucial role in describing the orbits of parabolic subgroups acting on their unipotent radicals. Moreover, it is shown in [24] that if R is an algebraically closed field then $S_{n}(c, R)$ is a cellular algebra and the extension $S_{n}(c, R) \subseteq M_{n}(R)$ is a Frobenius extension. But over an arbitrary field, these results are still to be understood. Recall that an extension $S \subseteq R$ of rings is called a Frobenius extension if ${ }_{S} R$ is a finitely generated projective S-module and ${ }_{R} R_{S} \simeq \operatorname{Hom}_{S}\left({ }_{S} R,{ }_{S} S\right)$ as R-S-bimodules. Such extensions have intriguing interest in many aspects in mathematics (see [12]).

For $\sigma \in \Sigma_{n}$, we can write σ as a product of disjoint cycles, say $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{s}$, where σ_{i} is a λ_{i}-cycle with $\lambda_{i} \geq 1$. Note that the product is unique up to re-ordering of these cycles. Thus we have a decomposition of $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{s}$. By assuming $\lambda_{1} \geq \cdots \geq \lambda_{s} \geq 1$, we get a partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right)$ of n with s parts, which is called the cycle type of σ. This numeric data seems to play a central role in understanding the structure of $S_{n}(\sigma, R)$.

This note has two purposes. The first one is to reveal some nice homological properties of $S_{n}(c, R)$ and to show that $S_{n}(c, R) \subseteq M_{n}(R)$ is always a Frobenius extension for arbitrary field R and $c \in M_{n}(R)$, including c being nilpotent. For the nilpotent case, one may see [5, Theorem $1.1(2)$] for some recent results. The second one is to give a combinatoric characterization in terms of cycle types of when two semisimple invariant matrix algebras are isomorphic. Here, the general question reads as follows.

Let R be a field and $\sigma, \tau \in \Sigma_{n}$. What are the necessary and sufficient conditions for $S_{n}(\sigma, R)$ and $S_{n}(\tau, R)$ to be isomorphic in term of partitions?

Recall that the dominant dimension of an A-module ${ }_{A} M$ is the supremum of n such that the first n terms in a minimal injective resolution of M are projective modules. An algebra A over a field is called Gorenstein if $\operatorname{injdim}\left({ }_{A} A\right)<\infty$ and $\operatorname{injdim}\left(A_{A}\right)<\infty$; and n-Auslander-Gorenstein if injdim $\left({ }_{A} A\right) \leq n+1 \leq \operatorname{domdim}\left({ }_{A} A\right)$ (see [10]). Here, for an A module M, we denote by $\operatorname{injdim}\left({ }_{A} M\right)$ and $\operatorname{domdim}\left({ }_{A} M\right)$ for the injective and dominant dimensions of ${ }_{A} M$, respectively. It is noted that an algebra A is n-Auslander-Gorenstein if and only if so is $A^{\text {op }}$ (see [10, Proposition 4.1(b)]). Thus Auslander-Gorenstein algebras are always Gorenstein.

Following [9], we define the Frobenius part of a finite-dimensional algebra A over a field k to be the endomorphism algebra of the projective module $A e$ with $e^{2}=e$ such that $\operatorname{add}(A e)$ is just the category of those projective A-modules that remain projective under any positive power of the Nakayama functor $\operatorname{Hom}_{k}(A, k) \otimes_{A}-$. Clearly, the Frobenius part of A may not be basic, but unique up to Morita equivalence. The algebra A is said to be Frobenius-finite if its Frobenius part is representation-finite. Note that Frobenius parts of algebras play an important role in understanding both the Auslander-Reiten conjecture on stable equivalences and the lifting of stable equivalences to derived equivalences (see [9] for details). Recall that a finite-dimensional algebra A over a field k is symmetric if $A \simeq \operatorname{Hom}_{k}(A, k)$ as A-bimodules; and gendo-symmetric [7] if it is isomorphic to the endomorphism algebra of a generator for a finite-dimensional symmetric k-algebra.

Our first main result reads as follows.

Theorem 1.1. If R is a field and $c \in M_{n}(R)$, then
(1) $S_{n}(c, R) \subseteq M_{n}(R)$ is a separable Frobenius extension.
(2) $S_{n}(c, R)$ is a Frobenius-finite, 1-Auslander-Gorenstein and gendo-symmetric algebra. Moreover, the Frobenius part of $S_{n}(c, R)$ is always a symmetric algebra.

To state our result on the isomorphism problem specifically, we introduce a few definitions. For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ of n with s parts, we define the so-called partition polynomial $\varepsilon_{\lambda}(x) \in \mathbb{Z}[x]$, which is the elementary symmetric polynomials $g_{i}(\lambda)$ in $\lambda_{1}, \cdots, \lambda_{s}$, over the canonical bisemigroup of natural numbers

$$
g_{i}(\lambda):=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s} \lambda_{k_{1}} \cdot \lambda_{k_{2}} \cdot \cdots \cdot \lambda_{k_{i}}
$$

where $\lambda_{i} \cdot \lambda_{j}$ means the greatest common divisor of λ_{i} and λ_{j}. The partition polynomial of λ is defined as

$$
\varepsilon_{\lambda}(x):=x^{s-1}-\frac{g_{s-1}(\lambda)}{g_{s}(\lambda)} x^{s-2}+\cdots+(-1)^{s-2} \frac{g_{2}(\lambda)}{g_{s}(\lambda)} x+(-1)^{s-1} \frac{g_{1}(\lambda)}{g_{s}(\lambda)} \in \mathbb{Z}[x],
$$

The coefficients of $\varepsilon_{\lambda}(x)$ can be calculated graphically (see Section 4.1 for details).

Theorem 1.2. Let R be a field of characteristic $p \geq 0$, let $\sigma \in \Sigma_{n}$ and $\tau \in \Sigma_{m}$ be of cycle types $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{t}\right)$, respectively. Then the following hold.
(1) $S_{n}(\sigma, R)$ is semisimple if and only if $p \nmid \lambda_{i}$ for all $1 \leq i \leq s$.
(2) Assume that the field R is an algebraically closed such that $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are semisimple. Then $S_{n}(\sigma, R) \simeq S_{m}(\tau, R)$ if and only if $m=n$ and $\varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)$, where $\varepsilon_{\lambda}(x) \in \mathbb{Z}[x]$ is the partition polynomial of λ. In particular, $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are Morita equivalent if and only if $(-1)^{s} d_{\lambda} \varepsilon_{\lambda}(1)=(-1)^{t} d_{\mu} \varepsilon_{\mu}(1)$, where d_{λ} denotes the greatest common divisor of $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$.

Thus the isomorphism problem for semisimple, invariant matrix algebras over an algebraically closed field can be read off from the numerical values of the elementary symmetric polynomials evaluated at the corresponding partitions (see Section 4.1 for more details).

This article is outlined as follows. Section 2 is devoted to some basic facts on invariant algebras of matrices, while Section 3 provides a proof of Theorem 1.1. Section 4 contributes to showing Theorem 1.2. During the course of the proof, we introduce a so-called polynomial equivalence relation and triangular divisor matrices of partitions based on elementary symmetric polynomials of partitions. Also, graphical calculations of the coefficients of partition polynomials are illustrated. At the end of this section, we formulate a few unsolved problems suggested by the main results.

2. Centralizer matrix algebras

In this section, we recall basic notions and establish primary facts on invariant matrix algebras. Throughout the paper, R denotes a unitary ring and $Z(R)$ its center.

For a subgroup G of Σ_{n}, the permutation matrices $c_{\sigma}:=e_{1,(1) \sigma}+e_{2,(2) \sigma}+\cdots+e_{n,(n) \sigma}$ with $\sigma \in G$ satisfy $\left(c_{\sigma}\right)_{i j}=\delta_{(i) \sigma, j}$ for $i, j \in[n], c_{\sigma} c_{\tau}=c_{\sigma \tau}$, and $c_{\sigma}^{\prime}=c_{\sigma^{-1}}=c_{\sigma}^{-1}$, where a^{\prime} is the transpose of the matrix a and $\delta_{i j}$ is the Kronecker symbol. Clearly, G acts on [n] and therefore on $M_{n}(R)$ by

$$
M_{n}(R) \times G \longrightarrow M_{n}(R),\left(a_{i j}\right) \cdot g:=\left(a_{(i) g,(j) g}\right),\left(a_{i j}\right) \in M_{n}(R), g \in G
$$

The set of all G-fixed points of this action in $M_{n}(R)$ is defined by

$$
\left(M_{n}(R)\right)^{G}:=\left\{a \in M_{n}(R) \mid a_{i j}=a_{(i) \sigma,(j) \sigma}, \forall \sigma \in G, i, j \in[n]\right\}=\bigcap_{\sigma \in G} S_{n}(\sigma, R) .
$$

Lemma 2.1. (1) $S_{n}(G, R)=\left(M_{n}(R)\right)^{G}$. In particular, $Z(R)\left[c_{\sigma}\right] \subseteq Z\left(S_{n}(\sigma, R)\right)$, where $Z(R)\left[c_{\sigma}\right]$ consists of all polynomials in c_{σ} with coefficients in $Z(R)$.
(2) $S_{n}(G, R)$ is a subring of the matrix ring $M_{n}(R)$.
(3) The transpose of matrices is an anti-automorphism of order 2 of the ring $S_{n}(G, R)$.
(4) If G is the subgroup of Σ_{n} generated by $\tau_{1}, \cdots, \tau_{r} \in \Sigma_{n}$, then $S_{n}(G, R)=$ $\cap_{i=1}^{r} S_{n}\left(\tau_{i}, R\right)$.

Proof. (1) This is already noticed in [18]. For the convenience of the reader, we sketch here a proof which will be used in the sequel. By definition, $c_{\sigma} a=a c_{\sigma}$ if and only if $\left(c_{\sigma} a\right)_{i j}=\left(a c_{\sigma}\right)_{i j}$ for all $i, j \in[n]$. But

1) $\left(c_{\sigma} a\right)_{i j}=\sum_{p=1}^{n}\left(c_{\sigma}\right)_{i p} a_{p j}=\sum_{p=1}^{n} \delta_{(i) \sigma, p} a_{p j}=a_{(i) \sigma, j}$,
2) $\left(a c_{\sigma}\right)_{i j}=\sum_{p=1}^{n} a_{i p}\left(c_{\sigma}\right)_{p j}=\sum_{p=1}^{n} a_{i p} \delta_{(p) \sigma, j}=a_{i,(j) \sigma^{-1}}$,
3) $\left(c_{\sigma} a c_{\sigma^{-1}}\right)_{i j}=a_{(i) \sigma,(j) \sigma}$.

Thus $c_{\sigma} a=a c_{\sigma}$ if and only if $a_{(i) \sigma, j}=a_{i,(j) \sigma^{-1}}$ for all i, j if and only if $a_{i j}=a_{(i) \sigma,(j) \sigma}$ for all $i, j \in[n]$.

The other statements are clear from definition.

By Lemma 2.1(1), $S_{n}(\sigma, R)=S_{n}(\langle\sigma\rangle, R)$, where $\langle\sigma\rangle$ is the subgroup of Σ_{n} generated by σ. The next lemma shows that $S_{n}(\sigma, R)$ depends only upon the cycle type λ of σ. So we may also write $S_{n}(\lambda, R)$ for $S_{n}(\sigma, R)$. The proof is similar to the one of [24, Lemma 2.1], we leave it to the reader.

Lemma 2.2. Let $\sigma, \tau \in \Sigma_{n}$, and let $d \in M_{n}(R)$ be an invertible matrix. Then
(1) $S_{n}\left(\sigma^{-1}, R\right)=S_{n}(\sigma, R)$. In particular, $S_{n}\left(c_{\sigma}, R\right)=S_{n}\left(c_{\sigma}^{\prime}, R\right)$.
(2) $S_{n}\left(d c_{\sigma} d^{-1}, R\right) \simeq S_{n}(\sigma, R)$ as rings.
(3) $S_{n}(\sigma \tau, R) \simeq S_{n}(\tau \sigma, R)$ as rings.

Let $\sigma \in \Sigma_{n}$ be of the cycle type $\left(\lambda_{1}, \cdots, \lambda_{s}\right), G=\langle\sigma\rangle$, and $\Lambda:=\{(i, j) \mid 1 \leq i, j \leq n\}$. Then G acts on Λ by $(i, j) \cdot \sigma=((i) \sigma,(j) \sigma)$. Let $O_{(i, j)}$ denote the G-orbit of (i, j). Then, according to 3), a matrix $a \in S_{n}(\sigma, R)$ if and only if a takes a constant value on each orbit $O_{(i, j)}$. Here, we regard $a \in M_{n}(R)$ as a function from Λ to R. Now we describe the number of G-orbits in Λ.

We assume $n \geq 2$ and consider the three cases.
(i) $\sigma=(12 \cdots n)$. In this case, G has order n and acts on Λ by $(i, j) \sigma=(i+1, j+1)$. Thus the stabilizer subgroup of G fixing $(i, j) \in \Lambda$ is trivial and the G-orbit of (i, j) has $|G|$ elements. Hence there are $n G$-orbits of Λ, they are $\mathcal{O}_{(1, j)}, 1 \leq j \leq n$.
(ii) $\sigma=(12 \cdots p)(p+1, \cdots, p+q)$ with $n=p+q$. In this case, $|G|=[p, q]$, the least common multiple of p and q. Let $X:=\{(i, j) \mid 1 \leq i \leq p, p+1 \leq j \leq n\}$ with the G-action given by $(i, j) \sigma=(i+1, j+1)$. Let $\sigma_{1}=(12 \cdots p) \in \Sigma_{p}$ and $\sigma_{2}=(p+1, \cdots, p+q) \in \Sigma_{q}$, here we consider Σ_{q} as the symmetric group of permutations on $\{p+1, p+2, \cdots, p+q\}$.

If $\left((i) \sigma^{l},(j) \sigma^{l}\right)=(i, j)$ for a natural number $1 \leq l \leq[p, q]$, then $\left((i) \sigma_{1}^{l},(j) \sigma_{2}^{l}\right)=(i, j)$. This implies that $p \mid l$ and $q \mid l$. Thus $[p, q] \mid l$ and $l=[p, q]$. Hence the stabilizer subgroup of G fixing (i, j) is trivial and the G-orbit of (i, j) has $[p, q]$ elements. Therefore the number of G-orbits of X is $p q /[p, q]$.
(iii) $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{s}$, a product of disjoint cycles with s a natural number, where σ_{i} is a cycle of length $\lambda_{i} \geq 1$ with the content X_{i}, the set of all numbers appearing in σ_{i}. Thus $|G|=\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right]$ and X_{i} is a G-orbit for $1 \leq i \leq s$, where $\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right]$ denotes the least common multiple of $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$. Therefore $X_{i} \cap X_{j}=\emptyset$ for $1 \leq i \neq j \leq s$, and $\cup_{j=1}^{s} X_{j}=\{1,2, \cdots, n\}$. The set Λ can be identified with the disjoint union

$$
\bigcup_{1 \leq i, j \leq s} X_{i} \times X_{j}
$$

For $(x, y) \in X_{i} \times X_{j}$, the G-orbit $\mathcal{O}_{(x, y)}$ of (x, y) depends only upon σ_{i} and σ_{j}. Thus, if $i=j$, then we are in case (i) and the number of G-orbits is λ_{i}. If $i \neq j$, then we are in the case (ii) and the number of G-orbits of $X_{i} \times X_{j}$ is $\lambda_{i} \lambda_{j} /\left[\lambda_{i}, \lambda_{j}\right]$. Thus the number of G-orbits of Λ is

$$
\ell_{n}(\sigma):=\sum_{1 \leq i, j \leq s} \frac{\lambda_{i} \lambda_{j}}{\left[\lambda_{i}, \lambda_{j}\right]}=\sum_{1 \leq i, j \leq s} \lambda_{i} \cdot \lambda_{j},
$$

where $\lambda_{i} \cdot \lambda_{j}$ stands for $\operatorname{gcd}\left(\lambda_{i}, \lambda_{j}\right)$, the greatest common divisor of λ_{i} and λ_{j}.
We define $C(\lambda):=\left(\lambda_{i} \cdot \lambda_{j}\right)_{s \times s} \in M_{s}(\mathbb{N})$. This symmetric matrix is called the greatest common divisor matrix of λ in the literature (see [2,13]). In this note, it will be called the dimension matrix of $S_{n}(\sigma, R)$. Further, let

$$
f_{i}:=\sum_{j \in X_{i}} e_{j j}, 1 \leq i \leq s, \quad f_{i j}:=\sum_{(p, q) \in \mathcal{O}_{(i, j)}} e_{p, q},(i, j) \in \Lambda .
$$

Then f_{1}, \cdots, f_{s} are pairwise orthogonal idempotent elements in $S_{n}(\sigma, R)$ and $\sum_{j=1}^{s} f_{j}=$ I_{n} in $M_{n}(R)$. This yields the matrix decomposition of $S_{n}(\sigma, R)$

$$
S_{n}(\sigma, R)=\left(\begin{array}{cccc}
f_{1} S_{n}(\sigma, R) f_{1} & f_{1} S_{n}(\sigma, R) f_{2} & \cdots & f_{1} S_{n}(\sigma, R) f_{s} \\
f_{2} S_{n}(\sigma, R) f_{1} & f_{2} S_{n}(\sigma, R) f_{2} & \cdots & f_{2} S_{n}(\sigma, R) f_{s} \\
\vdots & \vdots & \ddots & \vdots \\
f_{s} S_{n}(\sigma, R) f_{1} & f_{s} S_{n}(\sigma, R) f_{2} & \cdots & f_{s} S_{n}(\sigma, R) f_{s}
\end{array}\right)
$$

The transpose of matrices is an R-involution on $S_{n}(\sigma, R)$ fixing f_{i} for all $1 \leq i \leq s$.
Lemma 2.3. (1) $S_{n}(\sigma, R)$ is a free R-module of rank $\ell_{n}(\sigma)$.
(2) The R-rank of $f_{i} S_{n}(\sigma, R) f_{j}$ is $\lambda_{i} \cdot \lambda_{j}$.
(3) The dimension matrix $C(\lambda)$ of $S_{n}(\sigma, R)$ is positive definite if the numbers λ_{i}, $1 \leq i \leq s$, are pairwise distinct. In this case, the determinant $\operatorname{det} C(\lambda)$ of $C(\lambda)$ satisfies $\varphi\left(\lambda_{1}\right) \cdots \varphi\left(\lambda_{s}\right) \leq \operatorname{det} C(\lambda) \leq \prod_{i=1}^{s} \lambda_{i}-\frac{s!}{2}$, where $\varphi\left(\lambda_{i}\right)$ is the Euler's totient function of λ_{i}.

Proof. (1) and (2) are consequences of the definition of $S_{n}(\sigma, R)$ and the calculation of G-orbits of Λ (see also [19]). (3) is proved in [2, Theorem 2] and [13, Theorem 1 and Theorem 3].

Example 2.4. (1) $S_{n}((12 \cdots n), R) \simeq R\left[C_{n}\right]$, where $R\left[C_{n}\right]$ is the group algebra of the cyclic group C_{n} of order n over R. Note that $c_{(12 \cdots n)}=\sum_{j=1}^{n} e_{j, j+1}$ has order n and $c_{(12 \cdots n)}^{n}=f_{1}$ is the identity matrix. Here we understand $(n, n+1)=(n, 1)$. The transpose of matrices in $S_{n}((12 \cdots n), R)$ corresponds to the involution defined by $c_{(12 \cdots n)} \mapsto c_{(12 \cdots n)}^{-1}$.
(2) If $\lambda=\left(\lambda_{1}, \cdots, \lambda_{1}\right)=\left(\lambda_{1}^{s}\right)$ where λ_{1} appears s times, then $S_{s \lambda_{1}}(\lambda, R) \simeq$ $M_{s}\left(R\left[C_{\lambda_{1}}\right]\right)$. In fact, each element of $S_{s \lambda_{1}}(\lambda, R)$ can be partitioned as an $s \times s$ blockmatrix such that each block has entries in $f_{i} S_{s \lambda_{1}}(\lambda, R) f_{j} \simeq R\left[C_{\lambda_{1}}\right]$. Thus $S_{s \lambda_{1}}(\lambda, R) \simeq$ $M_{s}\left(R\left[C_{\lambda_{1}}\right]\right)$.

By Lemma 2.2(2), up to isomorphism of rings, we may assume

$$
\sigma=\left(12 \cdots \lambda_{1}\right)\left(\lambda_{1}+1, \cdots, \lambda_{1}+\lambda_{2}\right) \cdots\left(\lambda_{1}+\cdots+\lambda_{s-1}+1, \cdots, \lambda_{1}+\cdots+\lambda_{s}\right)
$$

as a product of disjoint cycles. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right), X_{1}=\left\{1, \cdots, \lambda_{1}\right\}, X_{i}=\{j \mid$ $\left.\sum_{\ell=1}^{i-1} \lambda_{\ell}<j \leq \sum_{\ell=1}^{i} \lambda_{i}\right\}$ for $2 \leq i \leq s, d_{i j}:=\lambda_{i} \cdot \lambda_{j}$. Then

$$
c_{\sigma}=\left(\begin{array}{cccc}
P_{\lambda_{1}} & 0 & \cdots & 0 \\
0 & P_{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & P_{\lambda_{s}}
\end{array}\right)_{n \times n} \quad \text { where } P_{m}:=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
1 & 0 & \cdots & 0
\end{array}\right)_{m \times m}
$$

For $r_{0}, \cdots, r_{m-1} \in R$, we denote by $C\left(r_{0}, \cdots, r_{m-1}\right)$ (or $C_{m}\left(r_{0}, \cdots, r_{m-1}\right)$) the circulant matrix

$$
\left(\begin{array}{ccccc}
r_{0} & r_{1} & r_{2} & \cdots & r_{m-1} \\
r_{m-1} & r_{0} & r_{1} & \cdots & r_{m-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
r_{2} & \cdots & \ddots & \ddots & r_{1} \\
r_{1} & r_{2} & \cdots & r_{m-1} & r_{0}
\end{array}\right)_{m \times m}=r_{0} I_{m}+r_{1} P_{m}+\cdots+r_{m-1} P_{m}^{m-1}
$$

Thus, for a cyclic group C_{m} of order m, we have

$$
R\left[C_{m}\right] \simeq S_{m}((12 \cdots m), R)=\left\{C\left(r_{0}, \cdots, r_{m-1}\right) \mid r_{0}, \cdots, r_{m-1} \in R\right\}
$$

Recall that, given $\sigma \in \Sigma_{n}$ and $\tau \in \Sigma_{m}$, an $n \times m$ matrix $a=\left(a_{i j}\right) \in M_{n \times m}(R)$ is called a (σ, τ)-invariant matrix if $c_{\sigma} a=a c_{\tau}$.

We see easily that an $s \times s$ block matrix $a=\left(A_{i j}\right)$ with $A_{i j} \in M_{\lambda_{i} \times \lambda_{j}}(R)$ lies in $S_{n}(\sigma, R)$ if and only if $A_{i j}$ is a $\left(\sigma_{i}, \sigma_{j}\right)$-invariant matrix for each pair $1 \leq i, j \leq s$. Thus a matrix $a \in S_{n}(\sigma, R)$ can be written as a block-matrix form

$$
a=\left(A_{i j}\right)=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 s} \\
A_{21} & A_{22} & \cdots & A_{2 s} \\
\vdots & \vdots & \ddots & \vdots \\
A_{s 1} & A_{s 2} & \cdots & A_{s s}
\end{array}\right)_{s \times s}
$$

where the diagonal $A_{i i}$ is a $\lambda_{i} \times \lambda_{i}$ circulant matrix and the off-diagonal $A_{i j}$ is a $\lambda_{i} \times \lambda_{j}$ matrix over R, having the block form:

$$
A_{i j}=\left(\begin{array}{ccc}
C\left(r_{1}, \cdots, r_{d_{i j}}\right) & \cdots & C\left(r_{1}, \cdots, r_{d_{i j}}\right) \\
\vdots & \cdots & \vdots \\
C\left(r_{1}, \cdots, r_{d_{i j}}\right) & \cdots & C\left(r_{1}, \cdots, r_{d_{i j}}\right)
\end{array}\right)_{\frac{\lambda_{i}}{d_{i j}} \times \frac{\lambda_{j}}{d_{i j}}}
$$

for $r_{1}, \cdots, r_{d_{i j}} \in R$ (see [19, p. 260] for $R=\mathbb{C}$). In general, we have an isomorphism of R-modules

$$
f_{i} S_{n}(\sigma, R) f_{j} \simeq\left\{A_{i j} \in M_{\lambda_{i} \times \lambda_{j}}(R) \mid r_{1}, \cdots, r_{d_{i j}} \in R\right\}
$$

Lemma 2.5. (1) For $1 \leq i \leq s, f_{i} S_{n}(\sigma, R) f_{i} \simeq R\left[C_{\lambda_{i}}\right]$ as rings.
(2) If $\lambda_{1}=\lambda_{2}$, then $S_{n}(\sigma, R) f_{1} \simeq S_{n}(\sigma, R) f_{2}$ as left $S_{n}(\sigma, R)$-modules.
(3) If $m:=n-\lambda_{i}$ and $f:=f_{1}+\cdots+f_{i-1}+f_{i+1}+\cdots+f_{s}$, then $f S_{n}(\sigma, R) f \simeq$ $S_{m}\left(\sigma_{1} \cdots \sigma_{i-1} \sigma_{i+1} \cdots \sigma_{s}, R\right)$ as rings.

Proof. (1) If $\lambda_{i}=1$, then $f_{i} S_{n}(\sigma, R) f_{i} \simeq R$ and (1) holds. We assume $\lambda_{i} \geq 2$ and define $m_{i-1}:=\sum_{j=1}^{i-1} \lambda_{j}, g:=e_{m_{i-1}+1, m_{i-1}+2}+\cdots+e_{m_{i-1}+\lambda_{i}-1, m_{i-1}+\lambda_{i}}+e_{m_{i-1}+\lambda_{i}, m_{i-1}+1}$. Then $g^{\lambda_{i}}=f_{i}$ and $g^{j} \neq f_{i}$ for all $1 \leq j<\lambda_{i}$. One can check that $\left\{f_{i}, g, g^{2}, \cdots, g^{\lambda_{i}-1}\right\}$ is an R-basis of $f_{i} S_{n}(\sigma, R) f_{i}$. Thus $f_{i} S_{n}(\sigma, R) f_{i} \simeq R\left[C_{\lambda_{i}}\right]$.
(2) By definition, $f_{1}=e_{11}+\cdots+e_{\lambda_{1}, \lambda_{1}}$ and $f_{2}=e_{\lambda_{1}+1, \lambda_{1}+1}+e_{\lambda_{1}+2, \lambda_{1}+2}+\cdots+e_{2 \lambda_{1}, 2 \lambda_{1}}$. Let $a_{0}:=e_{1, \lambda_{1}+1}+e_{2, \lambda_{1}+2}+\cdots+e_{\lambda_{1}, 2 \lambda_{1}}$. Then $a_{0} \in S_{n}(\sigma, R)$ and $f_{1} a_{0}=a_{0} f_{2}=a_{0}$. So, we define a map

$$
\psi: S_{n}(\sigma, R) f_{1} \longrightarrow S_{n}(\sigma, R) f_{2}, \quad a f_{1} \mapsto a f_{1} a_{0} \text { for } a \in S_{n}(\sigma, R)
$$

Note that ψ just moves the first λ_{1} columns of $a f_{1}$ entirely to the second λ_{1} columns of $a f_{1} a_{0}$, and sends other columns of $a f_{1}$ to zero. Thus ψ is a homomorphism of $S_{n}(\sigma, R)$ modules, and it is in fact an isomorphism of $S_{n}(\sigma, R)$-modules.
(3) We may assume $i=2$ since the argument below works for any i. If we delete the cycle σ_{2} from σ and consider $\tau:=\sigma_{1} \sigma_{3} \cdots \sigma_{s}$ as a permutation on $Y:=[n] \backslash X_{2}=$ $X_{1} \cup\left(X_{3} \cup \cdots \cup X_{s}\right)$, then $S_{m}\left(\sigma_{1} \sigma_{3} \cdots \sigma_{s}, R\right)$ is well defined. Observe that σ and τ have the same action on Y and that a matrix a in $f S_{n}(\sigma, R) f$ is of the form

$$
\left(\begin{array}{ccc}
A & 0 & U \\
0 & 0 & 0 \\
V & 0 & B
\end{array}\right)_{n \times n}
$$

where A is a matrix indexed by $X_{1} \times X_{1}, U$ is a matrix indexed by $X_{1} \times\left(X_{3} \cup \cdots \cup X_{s}\right)$, V is a matrix indexed by $\left(X_{3} \cup \cdots \cup X_{s}\right) \times X_{1}$ and B is a matrix indexed by $\left(X_{3} \cup \cdots \cup\right.$ $\left.X_{s}\right) \times\left(X_{3} \cup \cdots \cup X_{s}\right)$. Since $a \in f S_{n}(\sigma, R) f$, the block matrix

$$
b:=\left(\begin{array}{ll}
A & U \\
V & B
\end{array}\right)
$$

is in $S_{m}(\tau, R)$. Conversely, given a matrix $b \in S_{m}(\tau, R)$, we partition b into a block form according to Y, say the above form. Then we get an $n \times n$ matrix by putting 0 -blocks in the middle row and column, and this matrix is in $f S_{n}(\sigma, R) f$. Note that the identity in $f S_{n}(\sigma, R) f$ is $f=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. In this way, we get a one-to-one correspondence which preserves identity, addition and multiplication of matrices. This shows $f S_{n}(\sigma, R) f \simeq$ $S_{m}(\tau, R)$.

3. Proof of Theorem 1.1

This section is devoted to a proof of the statements of Theorem 1.1. We start with the following proposition.

Proposition 3.1. Let $k \subseteq K$ be an extension of fields with $\operatorname{dim}_{k}(K)<\infty$, and let $B \subseteq A$ be an extension of finite-dimensional algebras over k. Then $B \otimes_{k} K \subseteq A \otimes_{k} K$ is a Frobenius extension if and only if $B \subseteq A$ is a Frobenius extension.

To prove Proposition 3.1, we begin with a few lemmas.

Lemma 3.2. (1) Let $k \subseteq K$ be an extension of fields. Then it is a Frobenius extension if and only if $\operatorname{dim}_{k}(K)$ is finite.
(2) Let A be an algebra over a field, and let M and N be finite-dimensional A-modules. Then the following are equivalent for M and N :
(i) $M \simeq N$.
(ii) There is an integer $n \geq 1$ such that $M^{n} \simeq N^{n}$.

Proof. (1) is trivial. (2) is not difficult, but for the convenience of the reader, we include here a proof. We show that (ii) implies (i). Suppose $M \simeq \bigoplus_{i=1}^{s} X_{i}^{s_{i}}$ and $N \simeq \bigoplus_{j=1}^{t} Y_{i}^{t_{j}}$, where X_{i} and Y_{j} are indecomposable modules with $X_{i} \not 千 X_{p}, Y_{j} \not 千 Y_{q}$ for $1 \leq i \neq p \leq s$ and $1 \leq j \neq q \leq t, s_{i} \geq 1$ and $t_{j} \geq 1$. It follows from $M^{n} \simeq N^{n}$ that $s=t$ and, up to a permutation of these Y_{j}, that $X_{i} \simeq Y_{i}$ and $s_{i}=t_{i}$ for all i. Thus $M \simeq N$.

For k-algebras A and B, we may form the tensor product $A \otimes_{k} B$ of algebras over k. Given an A-module ${ }_{A} X$ and a B-module ${ }_{B} Y$, the tensor product $X \otimes_{k} Y$ has a left $\left(A \otimes_{k} B\right)$-module structure in a natural way, and the $\operatorname{Hom}^{-s e t} \operatorname{Hom}_{k}(X, Y)$ is a B - A -
bimodule defined by $b f: x \mapsto b(x f), f a: x \mapsto(a x) f$ for $x \in X, a \in A, b \in B$ and $f \in \operatorname{Hom}_{k}(X, Y)$.

The first statement (1) of the next lemma is known in [20, Lemma 4] and [8, Corollary 2.8], while the second statement (2) is in [4, Chap. XI, Theorem 3.1, pp. 209-210]. In fact, (1) can be proved by applying (2).

Lemma 3.3. (1) Let $B \subseteq A$ be an extension of algebras over a field k and C be an algebra over k. If $B \subseteq A$ is a Frobenius (or separable) extension, then the extension $B \otimes_{k} C \subseteq A \otimes_{k} C$ of tensor products of algebras is a Frobenius (or separable) extension.
(2) Let A, B, C, D, E, F be algebras over a field k, and let ${ }_{A} X,{ }_{A} Y$ be A-modules and ${ }_{B} X^{\prime},{ }_{B} Y^{\prime}$ be B-modules. Then $\operatorname{Hom}_{A \otimes_{k} B}\left(X \otimes_{k} X^{\prime}, Y \otimes_{k} Y^{\prime}\right) \simeq \operatorname{Hom}_{A}\left(X, X^{\prime}\right) \otimes_{k}$ $\operatorname{Hom}_{B}\left(Y, Y^{\prime}\right)$ as k-spaces. Moreover, if ${ }_{A} X_{C},{ }_{A} Y_{E},{ }_{B} X_{D}^{\prime}$ and ${ }_{B} Y_{F}^{\prime}$ are bimodules, then the foregoing isomorphism is a $\left(C \otimes_{k} D\right)-\left(E \otimes_{k} F\right)$-bimodule homomorphism.

Lemma 3.4. If $k \subseteq K$ is an extension of fields and $c \in M_{n}(k)$, then $S_{n}(c, K) \simeq S_{n}(c, k) \otimes_{k}$ K as K-algebras.

Proof. Observe that $a \lambda=\lambda a \in S_{n}(c, K)$ for $a \in S_{n}(c, k)$ and $\lambda \in K$. If we choose a basis of the k-space K, say $\left\{v_{i} \mid i \in I\right\}$, where I is an index set (not necessarily finite), then any matrix $a=\left(a_{i j}\right) \in M_{n}(K)$ can be expressed uniquely as $a=\sum_{p \in J} a^{(p)} v_{p}$, with J a subset of I and $a^{(p)} \in M_{n}(k)$ for $p \in J$. This is due to the fact that $\left\{v_{i} I_{n} \mid i \in I\right\}$ is a basis of the left $M_{n}(k)$-module $M_{n}(K)$, where I_{n} is the identity matrix. Hence a matrix $a=\left(a_{i j}\right) \in M_{n}(K)$ belongs to $S_{n}(c, K)$ if and only if $a^{(i)} \in S_{n}(c, k)$ for all $i \in J$. This yields that the restriction of the multiplication map $\mu: M_{n}(k) \otimes_{k} K \rightarrow M_{n}(K)$ to $S_{n}(c, k) \otimes_{k} K$ gives rise to a surjective homomorphism $\mu^{\prime}: S_{n}(c, k) \otimes_{k} K \rightarrow S_{n}(c, K)$ of K-algebras. Thus Lemma 3.4 follows from the commutative diagram

with μ clearly an isomorphism of K-algebras.
Proof of Proposition 3.1. It follows from Lemma 3.3(1) that $B \otimes_{k} K \subseteq A \otimes_{k} K$ is a Frobenius extension if $B \subseteq A$ is a Frobenius extension. Conversely, we postulate that $B \otimes_{k} K \subseteq A \otimes_{k} K$ is a Frobenius extension. Then $B \otimes_{k} K\left(A \otimes_{k} K\right)$ is a finitely generated projective $B \otimes_{k} K$-module and

$$
\operatorname{Hom}_{B \otimes_{k} K}\left(A \otimes_{k} K, B \otimes_{k} K\right) \simeq{ }_{A \otimes_{k} K}\left(A \otimes_{k} K\right)_{B \otimes_{k} K}
$$

First, we show that ${ }_{B} A$ is finitely generated. Suppose that $\left\{\lambda_{i} \mid i \in I\right\}$ is a k-basis of k-space K with $\lambda_{0}=1$. Then every element a in $A \otimes_{k} K$ can be uniquely expressed
as $\sum_{i \in I_{a}} a_{i} \otimes \lambda_{i}$ with $a_{i} \in A$, where I_{a} is a subset of I. Let $x_{1}, \cdots, x_{m} \in A \otimes_{k} K$ be generators of $A \otimes_{k} K$ over $B \otimes_{k} K$ and $x_{i}=\sum_{j \in I_{i}} a_{i j} \otimes_{k} \lambda_{j}$ with $a_{i j} \in A$, where I_{i} is an index set. Pick an element $a \in A$ and consider $a \otimes 1$. We write $a \otimes 1=\sum_{j=1}^{m} y_{j} x_{j}$, where $y_{j}=\sum_{p \in J_{j}} b_{p} \otimes \lambda_{p} \in B \otimes_{k} K$, and $\lambda_{p} \lambda_{j}=\sum_{q \in I_{p j}} \mu_{p j q} \lambda_{q}$, where $\mu_{p j q} \in k$ and $I_{p j}$ is a finite subset of I. Then $a \otimes 1$ is a finite summation of elements of the form $\mu_{p j q} b_{p} a_{i j} \otimes \lambda_{q}$ for $q \in I_{p j}$. By the unique expression of elements in $A \otimes_{k} K$, we see that a can be generated over B by all $a_{i j}$ with $1 \leq i \leq m$ and $j \in \cup_{t=1}^{m} I_{t}$. Thus ${ }_{B} A$ is finitely generated. Since $A \otimes_{k} K$ is projective over $B \otimes_{k} K$ and $B \otimes_{k} K$ is projective over B, we see that $A \otimes_{k} K$ is projective over B. This implies that ${ }_{B} A$ is projective over B. Now it follows from Lemma 3.3(2) that $\operatorname{Hom}_{B \otimes_{k} K}\left({ }_{B} A_{A} \otimes_{k} K,{ }_{B} B_{B} \otimes_{k} K\right) \simeq \operatorname{Hom}_{B}\left({ }_{B} A,{ }_{B} B\right) \otimes_{k} K$. Thus we have an isomorphism ${ }_{A} A_{B} \otimes_{k} K \simeq{ }_{A} \operatorname{Hom}_{B}\left({ }_{B} A_{A},{ }_{B} B\right)_{B} \otimes_{k} K$ as $\left(A \otimes_{k} K\right)-\left(B \otimes_{k}\right.$ $K)$-bimodules. Just considering the A - B-bimodule structure of this isomorphism, we get $\left({ }_{A} A_{B}\right)^{\operatorname{dim}_{k}(K)} \simeq \operatorname{Hom}_{B}\left({ }_{B} A_{A},{ }_{B} B\right)^{\operatorname{dim}_{k}(K)}$ as A - B-bimodules. By Lemma 3.2(2), we must have ${ }_{A} A_{B} \simeq \operatorname{Hom}_{B}\left({ }_{A} A,{ }_{B} B\right)$ as A - B-bimodules. Thus $B \subseteq A$ is a Frobenius extension.

Proof of Theorem 1.1(1). Suppose that R is any field and $c \in M_{n}(R)$. Let \bar{R} be an algebraic closure of R. So all eigenvalues of c lie in \bar{R}. We consider the smallest subfield K of \bar{R} containing R and all eigenvalues of c, that is, K is obtained from R by adding all eigenvalues of c. Thus K is a finite extension of R, that is, $\operatorname{dim}_{R}(K)<\infty$. We may assume that K is a splitting field of the characteristic polynomial of c. Thus c is similar to a Jordan-block matrix by a matrix in $G L_{n}(K)$. It follows from [24, Theorem 1.2(2)] that $S_{n}(c, K) \subseteq M_{n}(K)$ is a separable Frobenius extension. By Proposition 3.1 and Lemma 3.4, we deduce that $S_{n}(c, R) \subseteq M_{n}(R)$ is a separable Frobenius extension.

Now we turn to the proof of Theorem 1.1(2). Assume that c is a Jordan-block matrix with the same eigenvalues. More precisely, suppose

$$
c=\operatorname{diag}\left(J_{1}^{b_{1}}, J_{2}^{b_{2}}, \ldots, J_{s}^{b_{s}}\right) \in M_{n}(R),
$$

where J_{i}, the Jordan block of size λ_{i} with the eigenvalue $r \in R$, appears b_{i} times for $1 \leq i \leq s$ and $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{s}$.

As in [24, Section 2], we define

$$
m_{0}:=0, m_{i}:=\sum_{p=1}^{i} b_{p}, n_{i j}:=j \lambda_{i}+\sum_{p=1}^{i-1} b_{p} \lambda_{p}, 1 \leq i \leq s, 1 \leq j \leq b_{i}
$$

Then m_{s} is the number of Jordan blocks of c. For each $i \in\left[m_{s}\right]$, let $g(i)$ be the smallest $g(i) \in[s]$ such that $i \leq m_{g(i)}$, and let $h(i):=i-m_{g(i)-1} \in\left[b_{g(i)}\right]$ and $\theta_{i j}:=\min \left\{\lambda_{g(i)}, \lambda_{g(j)}\right\}$ for $j \in\left[m_{s}\right]$.

For each $i \in\left[m_{s}\right]$, we define

$$
f_{i}:=\sum_{p=n_{g(i) h(i)}-\lambda_{g(i)}+1}^{n_{g(i) h(i)}} e_{p p},
$$

that is, f_{i} is the identity matrix corresponding to the i-th block in the identity matrix I_{n}. Then $\left\{f_{1}, f_{2}, \cdots, f_{m_{s}}\right\}$ is a complete set of orthogonal primitive idempotents of $S_{n}(c, R)$ by [24, Lemma 2.6(4)].

Let $\Lambda:=S_{n}(c, R), \Lambda_{i j}:=f_{i} S_{n}(c, R) f_{j}$ and $\tilde{\Lambda}_{i j}:=\left\{a \in M_{\lambda_{g(i)} \times \lambda_{g(j)}}(R) \mid J_{g(i)} a=\right.$ $\left.a J_{g(j)}\right\}$. Given $1 \leq i, j \leq m_{s}$ and $1 \leq p \leq \theta_{i j}$, we define

$$
F_{i j}^{p}:=\sum_{v=1}^{p} e_{n_{g(i) h(i)}-\lambda_{g(i)}+p-v+1, n_{g(j) h(j)}-v+1} .
$$

Then $\left\{F_{i j}^{p} \mid 1 \leq p \leq \theta_{i j}\right\}$ is an R-basis of $f_{i} S_{n}(c, R) f_{j}$ and $\left\{F_{i j}^{p} \mid 1 \leq i, j \leq m_{s}, 1 \leq p \leq\right.$ $\left.\theta_{i j}\right\}$ is an R-basis of $S_{n}(c, R)$ by [24, Lemma 2.6(2)-(3)]. Moreover, we have the following property.

Lemma 3.5. ([24, Lemma 2.5]) If $1 \leq i, j, k, l \leq m_{s}, 1 \leq p \leq \theta_{i k}$ and $1 \leq q \leq \theta_{k j}$, then

$$
F_{i k}^{p} F_{l j}^{q}= \begin{cases}0 & \text { if } k \neq l \text { or } p+q-\lambda_{g(k)}<1 \\ F_{i j}^{p+q-\lambda_{g(k)}} & \text { if } k=l \text { and } p+q-\lambda_{g(k)} \geq 1\end{cases}
$$

Given $1 \leq u \leq m_{s}$, we have $f_{u}=F_{u u}^{\lambda_{g(u)}} \in \Lambda f_{u}$. By Lemma 3.5, $f_{u} F_{u 1}^{\lambda_{g(u)}}=F_{u 1}^{\lambda_{g(u)}}=$ $F_{u 1}^{\lambda_{g(u)}} f_{1} \in f_{u} \Lambda f_{1}$. So we can define a map

$$
\alpha_{u}: \Lambda f_{u} \longrightarrow \Lambda f_{1}, \quad a f_{u} \mapsto a f_{u} F_{u 1}^{\lambda_{g(u)}} \text { for } a \in \Lambda
$$

Note that $\left\{F_{i u}^{p} \mid 1 \leq i \leq m_{s}, 1 \leq p \leq \theta_{i u}\right\}$ is an R-basis of Λf_{u} and $F_{i u}^{p} F_{u 1}^{\lambda_{g(u)}}=F_{i 1}^{p}$ for $1 \leq i \leq m_{s}, 1 \leq p \leq \theta_{i u}$ by Lemma 3.5. Then $\left\{F_{i 1}^{p} \mid 1 \leq i \leq m_{s}, 1 \leq p \leq \theta_{i u}\right\}$ is an R-basis of the image of α_{u}. Let M_{u} be the image of α_{u}. Obviously, Λf_{u} and M_{u} have the same dimensions as R-spaces. Thus $\alpha_{u}: \Lambda f_{u} \rightarrow M_{u}$ is an isomorphism of Λ-modules. If $1 \leq u \leq b_{1}$, then $\theta_{i u}=\theta_{i 1}$ and $M_{u}=\Lambda f_{u}$. In this case, $\alpha_{u}: \Lambda f_{u} \rightarrow \Lambda f_{1}$ is an isomorphism of Λ-modules.

Similarly, it follows from $f_{1} F_{1 u}^{\lambda_{g(u)}}=F_{1 u}^{\lambda_{g(u)}}=F_{1 u}^{\lambda_{g(u)}} f_{u}$ that we may define a map

$$
\beta_{u}: f_{u} \Lambda \longrightarrow f_{1} \Lambda, \quad f_{u} a \mapsto F_{1 u}^{\lambda_{g(u)}} f_{u} a \text { for } a \in \Lambda
$$

Let N_{u} be the image of β_{u}. Then $\left\{F_{1 i}^{p} \mid 1 \leq i \leq m_{s}, 1 \leq p \leq \theta_{u i}\right\}$ is an R-basis of N_{u}, and $\beta_{u}: f_{u} \Lambda \rightarrow N_{u}$ is an isomorphism of right Λ-modules. In particular, if $1 \leq u \leq b_{1}$ then $\theta_{u i}=\theta_{1 i}, N_{u}=f_{u} \Lambda$ and β_{u} is an isomorphism of right Λ-modules.

In order to calculate the injective dimension of Λ, we need the following lemma. For convenience, let $\lambda_{s+1}=0, g\left(m_{s}+1\right)=s+1, M_{m_{s}+1}=0$ and $N_{m_{s}+1}=0$. We denote by $D=\operatorname{Hom}_{R}(-, R)$ the usual duality.

Lemma 3.6. $\Lambda f_{1} / M_{u} \simeq D\left(f_{1} \Lambda / N_{u}\right)$ as Λ-modules for $1 \leq u \leq m_{s}+1$. In particular, Λf_{1} is projective-injective.

Proof. For $1 \leq u \leq b_{1}, M_{u}=\Lambda f_{1}$ and $N_{u}=f_{1} \Lambda$, and therefore $\Lambda f_{1} / M_{u}=D\left(f_{1} \Lambda / N_{u}\right)=$ 0 . Now suppose $b_{1}+1 \leq u \leq m_{s}+1$.

We utilize the technique: If ${ }_{A} X$ and Y_{A} are finite-dimensional modules with a nondegenerate R-bilinear form $\langle-,-\rangle: X \times Y \rightarrow R$ which is associative: $\langle a x, y\rangle=\langle x, y a\rangle$ for all $x \in X, y \in Y, a \in A$, then $X \simeq D(Y)$ as A-modules.

For simplicity, let $f:=f_{1}$ and

$$
\rho: f \Lambda f \longrightarrow R[x] /\left(x^{\lambda_{1}}\right), \sum_{i=1}^{\lambda_{1}} r_{i} F_{11}^{i} \mapsto \sum_{i=1}^{\lambda_{1}} r_{i} \bar{x}^{\lambda_{1}-i} \text { for } r_{i} \in R
$$

be the canonical isomorphism of algebras. We define two R-linear maps π and ε as follows.

$$
\begin{aligned}
& \pi: R[x] /\left(x^{\lambda_{1}}\right) \longrightarrow R[x] /\left(x^{\lambda_{1}-\lambda_{g(u)}}\right), \sum_{i=0}^{\lambda_{1}-1} r_{i} \bar{x}^{i} \mapsto \sum_{i=0}^{\lambda_{1}-\lambda_{g(u)}-1} r_{i} \bar{x}^{i} \text { for } r_{i} \in R, \\
& \quad \varepsilon: R[x] /\left(x^{\lambda_{1}-\lambda_{g(u)}}\right) \longrightarrow R, \quad \sum_{i=0}^{\lambda_{1}-\lambda_{g(u)}-1} r_{i} \bar{x}^{i} \mapsto \sum_{i=0}^{\lambda_{1}-\lambda_{g(u)}-1} r_{i} \text { for } r_{i} \in R,
\end{aligned}
$$

where \bar{x} denotes the coset of x in the quotient rings. Note that $\left(\sum_{i=1}^{\lambda_{1}} r_{i} F_{11}^{i}\right) \rho=$ $\sum_{i=1}^{\lambda_{1}} r_{i} \bar{x}^{\lambda_{1}-i}=\sum_{j=0}^{\lambda_{1}-1} r_{\lambda_{1}-j} \bar{x}^{j}$. Then $\eta:=\rho \pi \varepsilon: f \Lambda f \rightarrow R, \sum_{i=1}^{\lambda_{1}} r_{i} F_{11}^{i} \mapsto$ $\sum_{i=0}^{\lambda_{1}-\lambda_{g(u)}-1} r_{\lambda_{1}-i}$, is an R-linear map. Further, we define

$$
\langle-,-\rangle: \Lambda f / M_{u} \times f \Lambda / N_{u} \longrightarrow R,\left\langle b f+M_{u}, f a+N_{u}\right\rangle:=(f a b f) \eta \text { for } a, b \in \Lambda
$$

We point out that $\langle-,-\rangle$ is independent of the choice of representatives of cosets in $\Lambda f / M_{u}$ and $f \Lambda / N_{u}$. Indeed, given $b f \in M_{u}$, we have $a b f \in M_{u}$ for $a \in \Lambda$ since M_{u} is a Λ-module. Note that $\left\{F_{11}^{p} \mid 1 \leq p \leq \lambda_{g(u)}\right\}$ is an R-basis of $f M_{u}$ and $\left(F_{11}^{p}\right) \eta=$ $\left(\bar{x}^{\lambda_{1}-p}\right) \pi \varepsilon=(0) \varepsilon=0$ for $1 \leq p \leq \lambda_{g(u)}$. Thus $\left\langle b f+M_{u}, f a+N_{u}\right\rangle=(f a b f) \eta=0$ for $a \in \Lambda$. Similarly, for $f a \in N_{u}$, we have $\left\langle b f+M_{u}, f a+N_{u}\right\rangle=(f a b f) \eta=0$ for $b \in \Lambda$. Thus $\langle-,-\rangle$ is well defined.

Clearly, $\langle-,-\rangle$ is an R-bilinear form and for $c \in \Lambda$,

$$
\left\langle c b f+M_{u}, f a+N_{u}\right\rangle=(f a c b f) \eta=\left\langle b f+M_{u}, f a c+N_{u}\right\rangle .
$$

Moreover, $\langle-,-\rangle$ is non-degenerate.

In fact, suppose $b f \in \Lambda f$ such that $\left\langle b f+M_{u}, f a+N_{u}\right\rangle=0$ for all $a \in \Lambda$. Then $(f \Lambda b f) \eta=0$. Since $(f \Lambda b f) \rho \pi$ is a left ideal in $R[x] /\left(x^{\lambda_{1}-\lambda_{g(u)}}\right)$ and $\operatorname{Ker}(\varepsilon)$ does not contain any nonzero left ideal of $R[x] /\left(x^{\lambda_{1}-\lambda_{g(u)}}\right)$, we get $(f \Lambda b f) \rho \pi=0$. In the following, we prove $b f \in M_{u}$.

Since $\left\{F_{i 1}^{p} \mid 1 \leq i \leq m_{s}, 1 \leq p \leq \lambda_{g(i)}\right\}$ is an R-basis of Λf, we write bf $=$ $\sum_{i=1}^{m_{s}} \sum_{p=1}^{\lambda_{g(i)}} r_{i p} F_{i 1}^{p} \in \Lambda f$ with $r_{i p} \in R$. For $1 \leq j \leq u-1$, we have $F_{1 j}^{\lambda_{g(j)}} \in f \Lambda$ and $F_{1 j}^{\lambda_{g(j)}} b f=\sum_{i=1}^{m_{s}} \sum_{p=1}^{\lambda_{g(i)}} r_{i p} F_{1 j}^{\lambda_{g(j)}} F_{i 1}^{p}=\sum_{p=1}^{\lambda_{g(j)}} r_{j p} F_{11}^{p} \in f \Lambda b f$ by Lemma 3.5. It follows from $(f \Lambda b f) \rho \pi=0$ that

$$
\begin{aligned}
\left(F_{1 j}^{\lambda_{g(j)}} b f\right) \rho \pi & =\left(\sum_{p=1}^{\lambda_{g(j)}} r_{j p} F_{11}^{p}\right) \rho \pi=\left(\sum_{p=1}^{\lambda_{g(j)}} r_{j p} \bar{x}^{\lambda_{1}-p}\right) \pi=\left(\sum_{q=\lambda_{1}-\lambda_{g(j)}}^{\lambda_{1}-1} r_{j, \lambda_{1}-q} \bar{x}^{q}\right) \pi \\
& =\sum_{q=\lambda_{1}-\lambda_{g(j)}}^{\lambda_{1}-\lambda_{g(u)}-1} r_{j, \lambda_{1}-q} \bar{x}^{q}=0
\end{aligned}
$$

in $R[x] /\left(x^{\lambda_{1}-\lambda_{g(u)}}\right)$. Thus $r_{j, \lambda_{1}-q}=0$ for $\lambda_{1}-\lambda_{g(j)} \leq q \leq \lambda_{1}-\lambda_{g(u)}-1$, that is, $r_{j p}=0$ for $\lambda_{g(u)}+1 \leq p \leq \lambda_{g(j)}$. Then $b f=\sum_{i=1}^{u-1} \sum_{p=1}^{\lambda_{g(u)}} r_{i p} F_{i 1}^{p}+\sum_{i=u}^{m_{s}} \sum_{p=1}^{\lambda_{g(i)}} r_{i p} F_{i 1}^{p}$. Note that

$$
\begin{aligned}
& \left\{F_{i 1}^{p} \mid 1 \leq i \leq m_{s}, 1 \leq p \leq \theta_{i u}\right\} \\
& =\left\{F_{i 1}^{p} \mid 1 \leq i \leq u-1,1 \leq p \leq \lambda_{g(u)}\right\} \cup\left\{F_{i 1}^{p} \mid u \leq i \leq m_{s}, 1 \leq p \leq \lambda_{g(i)}\right\}
\end{aligned}
$$

is an R-basis of M_{u}. Then $b f \in M_{u}$.
Similarly, if $f a \in f \Lambda$ such that $\left\langle b f+M_{u}, f a+N_{u}\right\rangle=0$ for all $b \in \Lambda$, then $f a \in N_{u}$. Thus $\langle-,-\rangle$ is a non-degenerate R-bilinear form.

Now, we define another R-linear map
$\psi_{u}: \Lambda f / M_{u} \longrightarrow D\left(f \Lambda / N_{u}\right), b f+M_{u} \mapsto\left(f a+N_{u} \mapsto\left\langle b f+M_{u}, f a+N_{u}\right\rangle\right)$ for $a, b \in \Lambda$.
Then $\left(f a+N_{u}\right)\left(c\left(b f+M_{u}\right)\right) \psi_{u}=\left\langle c\left(b f+M_{u}\right), f a+N_{u}\right\rangle=\left\langle b f+M_{u},\left(f a+N_{u}\right) c\right\rangle=$ $\left(\left(f a+N_{u}\right) c\right)\left(b f+M_{u}\right) \psi_{u}=\left(f a+N_{u}\right)\left(c\left(b f+M_{u}\right) \psi_{u}\right)$ for $a, b, c \in \Lambda$. This means that ψ_{u} is a homomorphism of Λ-modules. By definition, $\theta_{i u}=\theta_{u i}$ for $1 \leq i, j \leq m_{s}$. It follows from [24, Lemma 2.6(2)] that

$$
\begin{aligned}
\operatorname{dim}_{R}\left(\Lambda f_{i}\right) & =\sum_{1 \leq j \leq m_{s}} \operatorname{dim}_{R}\left(f_{j} \Lambda f_{i}\right)=\sum_{1 \leq j \leq m_{s}} \theta_{i j}=\sum_{1 \leq j \leq m_{s}} \theta_{j i} \\
& =\sum_{1 \leq j \leq m_{s}} \operatorname{dim}_{R}\left(f_{i} \Lambda f_{j}\right)=\operatorname{dim}_{R}\left(f_{i} \Lambda\right)
\end{aligned}
$$

for $1 \leq i \leq m_{s}$. Thus $\operatorname{dim}_{R}\left(\Lambda f_{i}\right)=\operatorname{dim}_{R}\left(f_{i} \Lambda\right)$ for $1 \leq i \leq m_{s}$. Due to $\operatorname{dim}_{R}\left(M_{u}\right)=$ $\operatorname{dim}_{R}\left(\Lambda f_{u}\right)$ and $\operatorname{dim}_{R}\left(N_{u}\right)=\operatorname{dim}_{R}\left(f_{u} \Lambda\right)$, we then get $\operatorname{dim}_{R}\left(M_{u}\right)=\operatorname{dim}_{R}\left(N_{u}\right)$ and $\operatorname{dim}_{R}\left(\Lambda f / M_{u}\right)=\operatorname{dim}_{R}\left(f \Lambda / N_{u}\right)$. Since ψ_{u} is injective by the non-degenerative form, it is an isomorphism of Λ-modules.

Lemma 3.7. Λ is 1 -Auslander-Gorenstein. In particular, Λ is Gorenstein.
Proof. Suppose $s=1$. Then $\Lambda \simeq M_{b_{1}}\left(R[x] /\left(x^{\lambda_{1}}\right)\right)$ by [24, Lemma 2.6(1)]. Thus Λ is self-injective and $\operatorname{injdim}\left({ }_{\Lambda} \Lambda\right)=0<2<\infty=\operatorname{domdim}(\Lambda)$. Hence Λ is 1 -minimal Auslander-Gorenstein.

Suppose $s \geq 2$. By Lemma 3.6, $\Lambda f_{1} \simeq D\left(f_{1} \Lambda\right)$ is a projective-injective module. For $1 \leq u \leq b_{1}$, we have $\Lambda f_{u} \simeq \Lambda f_{1}$ and $f_{u} \Lambda \simeq f_{1} \Lambda$. Then Λf_{u} is projective and injective for $1 \leq u \leq b_{1}$. For $b_{1}+1 \leq u \leq m_{s}$, there are two exact sequences of Λ-modules:

$$
\begin{aligned}
& 0 \longrightarrow \Lambda f_{u} \xrightarrow{\alpha_{u}} \Lambda f_{1} \xrightarrow{\alpha_{u}^{\prime}} \Lambda f_{1} / M_{u} \longrightarrow 0 \\
(*) & 0 \longrightarrow f_{u} \Lambda \xrightarrow{\beta_{u}} f_{1} \Lambda \xrightarrow{\beta_{u}^{\prime}} f_{1} \Lambda / N_{u} \longrightarrow 0 .
\end{aligned}
$$

By applying $D=\operatorname{Hom}_{R}(-, R)$ to the exact sequence $(*)$, we get the exact sequence of Λ-modules:

$$
0 \longrightarrow D\left(f_{1} \Lambda / N_{u}\right) \xrightarrow{D\left(\beta_{u}^{\prime}\right)} D\left(f_{1} \Lambda\right) \xrightarrow{D\left(\beta_{u}\right)} D\left(f_{u} \Lambda\right) \longrightarrow 0 .
$$

By Lemma 3.6, we have $\psi_{u}: \Lambda f_{1} / M_{u} \xrightarrow{\sim} D\left(f_{1} \Lambda / N_{u}\right)$ as Λ-modules. This gives rise to an exact sequence

$$
(\star) \quad 0 \longrightarrow \Lambda f_{u} \xrightarrow{\alpha_{u}} \Lambda f_{1} \xrightarrow{\alpha_{u}^{\prime} \psi_{u} D\left(\beta_{u}^{\prime}\right)} D\left(f_{1} \Lambda\right) \xrightarrow{D\left(\beta_{u}\right)} D\left(f_{u} \Lambda\right) \longrightarrow 0
$$

of Λ-modules. Again by Lemma 3.6, $\Lambda f_{1} \simeq D\left(f_{1} \Lambda\right)$ is projective-injective. Since Λf_{1} is indecomposable, α_{u} and $D\left(\beta_{u}^{\prime}\right)$ are injective envelopes of Λf_{u} and $D\left(f_{1} \Lambda / N_{u}\right)$, respectively. Therefore the sequence (\star) is a minimal injective resolution of ${ }_{\Lambda} \Lambda f_{u}$. Thus $\operatorname{injdim}\left({ }_{\Lambda} \Lambda f_{u}\right)=2$ for $b_{1}+1 \leq u \leq m_{s}$ and $\operatorname{injdim}\left({ }_{\Lambda} \Lambda\right)=2$.

For $b_{1}+1 \leq u \leq m_{s}, \Lambda f_{u}$ is not an injective Λ-module. Otherwise, it follows from the monomorphism α_{u} that Λf_{u} is a direct summand of Λf_{1}, and this would mean $\Lambda f_{u} \simeq$ Λf_{1}, a contradiction to $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{s}$. Thus Λf_{1}, up to isomorphism of Λ-modules, is the unique indecomposable, projective-injective Λ-module. By (\star), $\operatorname{domdim}\left(\Lambda f_{u}\right)=2$ for $b_{1}+1 \leq u \leq m_{s}$ and $\operatorname{domdim}(\Lambda)=2$.

Thus $\operatorname{injdim}(\Lambda \Lambda)=2=\operatorname{domdim}(\Lambda)$ and Λ is 1-Auslander-Gorenstein.
Since an indecomposable projective module which is stable under the Nakayama functor must be projective-injective, the proof of Lemma 3.7 shows that Λf_{1} is the only (up to isomorphism) indecomposable projective-injective Λ-module stable under arbitrary positive power of the Nakayama functor $D \operatorname{Hom}_{\Lambda}(-, \Lambda)$. Thus Λ has the Frobenius part $f_{1} \Lambda f_{1}$ which is isomorphic to $R[x] /\left(x^{\lambda_{1}}\right)$.

Lemma 3.8. Let A be a finite-dimensional k-algebra over a field k, and let $k \subseteq K$ be an extension of fields.
(1) If A is a symmetric k-algebra, then $A \otimes_{k} K$ is a symmetric K-algebra.
(2) Suppose that the extension $k \subseteq K$ is finite. If $A \otimes_{k} K$ is a symmetric K-algebra, then A is a symmetric k-algebra.

Proof. Let $D_{k}:=\operatorname{Hom}_{k}(-, k)$ for a field k. Then we have the isomorphisms of $A \otimes_{k} K-$ bimodules.
$(\diamond) \quad D_{K}\left(A \otimes_{k} K\right)=\operatorname{Hom}_{K}\left(A \otimes_{k} K, K\right)$

$$
\begin{aligned}
& \simeq \operatorname{Hom}_{k}\left(A, \operatorname{Hom}_{K}(K, K)\right) \quad(\text { by the adjunction isomorphism }) \\
& \simeq \operatorname{Hom}_{k}(A, K) \simeq \operatorname{Hom}_{k}\left(A, k \otimes_{k} K\right) \\
& \simeq \operatorname{Hom}_{k}(A, k) \otimes_{k} K \quad(A \text { is a finite-dimensional } k \text {-space }) \\
& =D_{k}(A) \otimes_{k} K
\end{aligned}
$$

(1) Suppose that A is a symmetric k-algebra. Then there exists an isomorphism η : ${ }_{A} A_{A} \rightarrow{ }_{A} D_{k}(A){ }_{A}$ of A-bimodules. Then the induced homomorphism $\eta \otimes 1: A \otimes_{k} K \rightarrow$ $D_{k}(A) \otimes_{k} K$ is an isomorphism of $A \otimes_{k} K$-bimodules. By (\diamond), we have $A \otimes_{k} K \simeq D_{K}\left(A \otimes_{k}\right.$ K) as $A \otimes_{k} K$-bimodules. Thus $A \otimes_{k} K$ is a symmetric K-algebra.
(2) Suppose that the extension $k \subseteq K$ is finite and $A \otimes_{k} K$ is a symmetric K-algebra. Then $A \otimes_{k} K \simeq D_{K}\left(A \otimes_{k} K\right)$ as $A \otimes_{k} K$-bimodules. By (\diamond), we get $A \otimes_{k} K \simeq D_{k}(A) \otimes_{k} K$ as $A \otimes_{k} K$-bimodules. Just considering the A-bimodule structure of this isomorphism, we then obtain $A^{\operatorname{dim}_{k}(K)} \simeq D_{k}(A)^{\operatorname{dim}_{k}(K)}$ as A-bimodules. By Lemma 3.2(2), we have $A \simeq D_{k}(A)$ as A-bimodules, that is, A is a symmetric k-algebra.

Theorem 1.1(2) is a summary of the next two results.
Proposition 3.9. Let k be a field and $d \in M_{n}(k)$. Then $S_{n}(d, k)$ is always 1 -AuslanderGorenstein and Frobenius-finite. Moreover, the Frobenius part of $S_{n}(d, k)$ is a symmetric k-algebra.

Proof. Let R be a splitting field of the characteristic polynomial of d over k. Then all eigenvalues of d lie in R and R is a finite extension of k. Thus d is similar to a Jordan-block matrix c in $M_{n}(R)$. We can assume $c=\operatorname{diag}\left(c_{1}, \cdots, c_{t}\right) \in M_{n}(R)$, where $c_{i} \in M_{n_{i}}(R)$ is a Jordan-block matrix with the same eigenvalue r_{i} and $r_{i} \neq r_{j}$ for $1 \leq i \neq j \leq t$. By [24, Lemma 2.1(1)], $S_{n}(d, R) \simeq S_{n}(c, R)$ as R-algebras.

Let $\Lambda_{i}:=S_{n_{i}}\left(c_{i}, R\right)$. Then there is an algebra isomorphism $S_{n}(c, R) \simeq \operatorname{diag}\left(\Lambda_{1}, \Lambda_{2}\right.$, $\left.\ldots, \Lambda_{t}\right)$ by [24, Lemma 2.7(2)]. According to Lemma 3.7, there holds injdim $\left(\Lambda_{i} \Lambda_{i}\right) \leq 2 \leq$ $\operatorname{domdim}\left(\Lambda_{i}\right)$ for $1 \leq i \leq s$. It then follows from $\operatorname{injdim}\left(S_{n}(c, R)\right)=\max \left\{\operatorname{injdim}\left(\Lambda_{i} \Lambda_{i}\right) \mid\right.$ $1 \leq i \leq t\}$ and $\operatorname{domdim}\left(S_{n}(c, R)\right)=\min \left\{\operatorname{domdim}\left(\Lambda_{i}\right) \mid 1 \leq i \leq t\right\}$ that $\operatorname{injdim}\left(S_{n}(c, R)\right) \leq 2 \leq \operatorname{domdim}\left(S_{n}(c, R)\right)$. Hence $S_{n}(c, R)$ is 1-Auslander-Gorenstein, and therefore $S_{n}(d, R)$ is 1-Auslander-Gorenstein. By Lemma 3.4, $S_{n}(d, R) \simeq S_{n}(d, k) \otimes_{k}$ R as rings. It follows from [15, Lemma 5] that $S_{n}(d, k)$ and $S_{n}(d, R)$ have the same selfinjective and dominant dimensions. Thus $S_{n}(d, k)$ is 1-Auslander-Gorenstein.

Let $D_{k}:=\operatorname{Hom}_{k}(-, k), B:=S_{n}(d, k)$ and $\Lambda:=S_{n}(d, R) \simeq S_{n}(d, k) \otimes_{k} R=B \otimes_{k} R$. Suppose that $e B e$ is the Frobenius part of B with $e^{2}=e \in B$, so that $B e$ is the direct sum of all non-isomorphic indecomposable projective-injective modules that remain projective under any positive power of the Nakayama functor $\nu_{B}:=D_{k} \operatorname{Hom}_{B}(-, B)$. We may assume $e \neq 0$ and prove that $\Lambda(e \otimes 1)$ is stable under the Nakayama functor $D_{R} \operatorname{Hom}_{\Lambda}(-, \Lambda)$. Indeed, since the B-module $B e$ is basic and the projective module $\nu_{B}(B e)$ remains projective under the functor ν_{B}^{i} for $i \geq 0$, we get $B e \simeq \nu_{B}(B e)$. Moreover, there are the following isomorphisms of Λ-modules:

$$
\begin{aligned}
& D_{R} \operatorname{Hom}_{\Lambda}(\Lambda(e \otimes 1), \Lambda) \\
& \simeq D_{R} \operatorname{Hom}_{B \otimes_{k} R}\left(B e \otimes_{k} R, B \otimes_{k} R\right) \\
& \simeq D_{R}\left(\operatorname{Hom}_{B}(B e, B) \otimes_{k} R\right) \quad(\text { by Lemma } 3.3(2)) \\
& =\operatorname{Hom}_{R}\left(\operatorname{Hom}_{B}(B e, B) \otimes_{k} R, R\right) \\
& \simeq \operatorname{Hom}_{k}\left(\operatorname{Hom}_{B}(B e, B), R\right) \\
& \simeq \operatorname{Hom}_{k}\left(\operatorname{Hom}_{B}(B e, B), k \otimes_{k} R\right) \\
& \simeq \operatorname{Hom}_{k}\left(\operatorname{Hom}_{B}(B e, B), k\right) \otimes_{k} R \quad\left(\operatorname{Hom}_{B}(B e, B) \text { is a finite-dimensional } k \text {-space }\right) \\
& \simeq B e \otimes_{k} R \\
& \simeq \Lambda(e \otimes 1)
\end{aligned}
$$

Since Λ is isomorphic to $\prod_{i=1}^{t} \Lambda_{i}$ as algebras, we may assume that $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t} \in \Lambda$ are pairwise orthogonal central idempotents such that $1=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{t}$ and $\Lambda \varepsilon_{i} \simeq \Lambda_{i}$ as algebras for $1 \leq i \leq t$. In the following, we identify $\Lambda \varepsilon_{i}$ and Λ_{i}. Then

$$
\begin{aligned}
\varepsilon_{i} \Lambda(e \otimes 1) & \simeq \varepsilon_{i} D_{R} \operatorname{Hom}_{\Lambda}(\Lambda(e \otimes 1), \Lambda) \simeq D_{R} \operatorname{Hom}_{\Lambda}\left(\Lambda(e \otimes 1), \Lambda \varepsilon_{i}\right) \\
& \simeq D_{R} \operatorname{Hom}_{\Lambda}\left(\varepsilon_{i} \Lambda(e \otimes 1), \Lambda \varepsilon_{i}\right) \simeq D_{R} \operatorname{Hom}_{\Lambda_{i}}\left(\varepsilon_{i} \Lambda(e \otimes 1), \Lambda_{i}\right)
\end{aligned}
$$

as Λ_{i}-modules for $1 \leq i \leq t$. On the other hand, by the proof of Lemma 3.7, we may assume that $\Lambda_{i} f_{i 1}$ is the indecomposable, projective-injective module which defines the Frobenius part of Λ_{i} for $1 \leq i \leq t$. Thus $\varepsilon_{i} \Lambda(e \otimes 1) \in \operatorname{add}\left(\Lambda_{i} f_{i 1}\right)$. Moreover, for $1 \leq i \leq t$, $\operatorname{add}\left(\varepsilon_{i} \Lambda(e \otimes 1)\right)=\operatorname{add}\left(\Lambda_{i} f_{i 1}\right)$ if and only if $\varepsilon_{i} \Lambda(e \otimes 1) \neq 0$ if and only if $\varepsilon_{i}(e \otimes 1) \neq 0$. Thus $\varepsilon_{i} \Lambda(e \otimes 1)$ defines the Frobenius part of Λ_{i} if $\varepsilon_{i}(e \otimes 1) \neq 0$. Let I be the set of $1 \leq i \leq t$ such that $\varepsilon_{i}(e \otimes 1) \neq 0$. Then $\operatorname{add}(\Lambda(e \otimes 1))=\operatorname{add}\left(\bigoplus_{i=1}^{t} \varepsilon_{i} \Lambda(e \otimes 1)\right)=$ $\operatorname{add}\left(\bigoplus_{i \in I} \Lambda_{i} f_{i 1}\right)$. This shows that $\operatorname{End}_{\Lambda}(\Lambda(e \otimes 1)) \simeq(e \otimes 1) \Lambda(e \otimes 1)=e B e \otimes_{k} R$ can also be regarded as the Frobenius part of the algebra $\prod_{i \in I} \Lambda_{i}$. Since the Frobenius part of $\prod_{i \in I} \Lambda_{i}$ is representation-finite and symmetric, the algebra $e B e \otimes_{k} R$ is representationfinite and symmetric. By [11, Lemma 3.2], if $e B e \otimes_{k} R$ is representation-finite, then $e B e$ is representation-finite, namely B is Frobenius-finite. By Lemma 3.8, if $e B e \otimes_{k} R$ is a symmetric R-algebra, then $e B e$ is a symmetric k-algebra.

The following corollary is motivated by comments of an anonymous referee.

Corollary 3.10. $S_{n}(d, k)$ is a gendo-symmetric algebra for any field k and $d \in M_{n}(k)$.
Proof. We keep the notation in the proof of Proposition 3.9. By Proposition 3.9, $\operatorname{domdim}(B) \geq 2$. Thus we can pick a projective-injective faithful right B-module P_{B} and consider $H:=\operatorname{End}_{B^{\text {op }}}(P)$. Then $H_{H} P_{B}$ has a natural bimodule structure. It follows from $P \in \operatorname{add}\left(B_{B}\right)$ that ${ }_{H} \operatorname{End}_{B^{\circ p}}(P) \in \operatorname{add}\left({ }_{H} \operatorname{Hom}_{B^{\text {op }}}(B, P)\right)$, namely ${ }_{H} P$ is a generator for the module category of the k-algebra H. We claim that the canonical homomorphism

$$
\phi: B \rightarrow \operatorname{End}_{H}(P), b \mapsto(p \mapsto p b), b \in B, p \in P
$$

is an isomorphism of k-algebras. Indeed, it follows from $\operatorname{domdim}(B) \geq 2$ that there is an injective resolution of $B_{B}: 0 \rightarrow B_{B} \rightarrow P^{u} \longrightarrow P^{v}$ with positive integers u, v. Since P_{B} is injective, the induced sequence of H-modules:

$$
\operatorname{Hom}_{B^{o p}}\left(P^{v}, P\right) \longrightarrow \operatorname{Hom}_{B^{o p}}\left(P^{u}, P\right) \longrightarrow \operatorname{Hom}_{B^{o p}}(B, P) \longrightarrow 0
$$

is exact. This implies that the following diagram is commutative and exact:

where the vertical maps are defined canonically. Thus ϕ_{B} is an isomorphism of $B^{o p_{-}}$ modules. Clearly $\operatorname{Hom}_{H}\left(\operatorname{Hom}_{B^{o p}}(B, P), P\right) \simeq \operatorname{Hom}_{H}\left({ }_{H} P,{ }_{H} P\right)=\operatorname{End}_{H}(P)$ and ϕ is an algebra isomorphism.

To prove that B is a gendo-symmetric algebra, it remains only to show that H is a symmetric k-algebra. Note that $P \otimes_{k} R$ is a projective-injective $\Lambda^{o p}$-module and therefore $\left(P \otimes_{k} R\right) \varepsilon_{i}$ is a projective-injective $\Lambda_{i}^{o p}$-module for $1 \leq i \leq t$. By the proof of Lemma 3.7 for right modules, we see that $f_{i 1} \Lambda_{i}$ is the only (up to isomorphism) indecomposable projective-injective $\Lambda_{i}^{o p}$-module for $1 \leq i \leq t$. Thus we have $\left(P \otimes_{k} R\right) \varepsilon_{i} \in \operatorname{add}\left(f_{i 1} \Lambda_{i}\right)$. Moreover, for $1 \leq i \leq t, \operatorname{add}\left(\left(P \otimes_{k} R\right) \varepsilon_{i}\right)=\operatorname{add}\left(f_{i 1} \Lambda_{i}\right)$ if and only if $\left(P \otimes_{k} R\right) \varepsilon_{i} \neq 0$. Let $J:=\left\{i \mid 1 \leq i \leq t,\left(P \otimes_{k} R\right) \varepsilon_{i} \neq 0\right\}$. Then $\operatorname{add}\left({ }_{\Lambda} P \otimes_{k} R\right)=\operatorname{add}\left(\bigoplus_{i=1}^{t}\left(P \otimes_{k} R\right) \varepsilon_{i}\right)=$ $\operatorname{add}\left(\bigoplus_{i \in J} f_{i 1} \Lambda_{i}\right)$ and $\operatorname{End}_{\Lambda^{o p}}\left(P \otimes_{k} R\right)$ is Morita equivalent to $\operatorname{End}_{\Lambda^{o p}}\left(\bigoplus_{i \in J} f_{i 1} \Lambda_{i}\right)$, but the latter is isomorphic to $\prod_{i \in J} f_{i 1} \Lambda_{i} f_{i 1}$ as algebras. By [24, Lemma 2.6(1)], $f_{i 1} \Lambda_{i} f_{i 1}$ is a symmetric R-algebra for $i \in J$, and therefore $\prod_{i \in J} f_{i 1} \Lambda_{i} f_{i 1}$ is a symmetric R-algebra. It is known that a finite-dimensional algebra over a field Morita (or derived) equivalent to a symmetric algebra is itself symmetric. Thus $\operatorname{End}_{\Lambda^{o p}}\left(P \otimes_{k} R\right)$ is a symmetric R-algebra. Now, it follows from the R-algebra isomorphisms

$$
H \otimes_{k} R=\operatorname{End}_{B^{o p}}(P) \otimes_{k} R \simeq \operatorname{End}_{\left(B \otimes_{k} R\right)^{o p}}\left(P \otimes_{k} R\right)=\operatorname{End}_{\Lambda^{o p}}\left(P \otimes_{k} R\right)
$$

that $H \otimes_{k} R$ is a symmetric R-algebra. Since the extension $k \subseteq R$ is finite, H is a symmetric k-algebra by Lemma 3.8. Hence B is a gendo-symmetric k-algebra.

4. Proof of Theorem 1.2

In this section we introduce an equivalence relation on the set of partitions of n with exactly s parts by employing elementary symmetric polynomials. We then study combinatorics of this relation by a matrix norm over the semiring of nonnegative integers. Finally, we prove Theorem 1.2.

4.1. A new equivalence relation on partitions

Recall that a nonempty set A together with two associative binary operations + and \cdot, named addition and multiplication, respectively, is called a bisemigroup. A bisemigroup $(A,+, \cdot)$ is called a semiring if $(A,+)$ is commutative and the distributive laws hold: $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(x+y) \cdot z=x \cdot z+y \cdot z$ for $x, y, z \in A$. A commutative semiring is a semiring such that the multiplication is commutative.

Definition 4.1. A bisemigroup $(A,+,$.$) is called a quarter-ring if$
(1) $(A,+)$ and $(A,$.$) are commutative,$
(2) $a \cdot a=a$ for $a \in A$, and
(3) $(a+b) \cdot a=b \cdot a$ for $a, b \in A$.

In a bisemigroup $(A,+, \cdot)$, for any positive integer m and $a_{i}, b, d \in A$, we write $\sum_{i=1}^{m} a_{i}$ for $a_{1}+\cdots+a_{m}$, particularly, $m a$ for $\sum_{i=1}^{m} a$, and a^{m} for $\underbrace{a \cdot a \cdots \cdots a}_{m}$, the product of m copies of a.

In a quarter-ring $(A,+,$.$) , the following hold.$

- If $a \cdot b=d$, then $a \cdot d=d$. In particular, if $a_{i} \cdot b=d$ for $1 \leq i \leq n$, then $a_{1} \cdot \cdots \cdot a_{n} \cdot b=d$.
- $\quad(m a+b) \cdot a=a \cdot b$ and $(m a) \cdot a=a$ for any positive integer m.
- If $(A,+)$ is additionally a monoid with zero element 0 , then $0 \cdot a=a$ for $a \in A$.
- $a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}=\left(a_{1} \cdot a_{2}\right) \cdot\left(a_{2} \cdot a_{3}\right) \cdot \cdots \cdot\left(a_{n-1} \cdot a_{n}\right)$.
- $\left(a_{1} \cdot a_{2} \cdot \cdots \cdot a_{n}\right) \cdot b=\left(a_{1} \cdot b\right) \cdot\left(a_{2} \cdot \cdots \cdot a_{n}\right)=\left(a_{1} \cdot b\right) \cdot\left(a_{2} \cdot b\right) \cdot\left(a_{3} \cdot \cdots \cdot a_{n}\right)=\cdots=$ $\left(a_{1} \cdot b\right) \cdot\left(a_{2} \cdot b\right) \cdot \cdots \cdot\left(a_{n} \cdot b\right)$.

Example 4.2. (1) Let \mathbb{N} be the set of natural numbers including 0 . Then \mathbb{N} with the usual addition and multiplication forms a semiring. The polynomial semiring $\mathbb{N}\left[x_{1}, \cdots, x_{s}\right]$ over \mathbb{N} in variables x_{1}, \cdots, x_{s} is the set of all polynomials over \mathbb{N} with the usual addition and multiplication of polynomials. Similarly, we define the matrix semiring $M_{n}(R)$ over a semiring R.
(2) Let $a \cdot b:=\operatorname{gcd}(a, b)$ for $a, b \in \mathbb{N}$. Then $(\mathbb{N},+,$.$) is a quarter-ring, but not a$ semiring. It is called the canonical quarter-ring of natural numbers.

Recall that a multiset is a collection of elements possibly containing duplicates. For a multiset $\lambda=\left\{\lambda_{1}, \cdots, \lambda_{s}\right\}$ of s elements in \mathbb{N}, we define a map φ_{λ} from the polynomial
semiring $\mathbb{N}\left[x_{1}, \cdots, x_{s}\right]$ to $(\mathbb{N},+,$.$) as follows:$

$$
\varphi_{\lambda}: \mathbb{N}\left[x_{1}, \cdots, x_{s}\right] \longrightarrow \mathbb{N}, \quad \sum_{i_{1}, \cdots, i_{s}} a_{i_{1}, \cdots, i_{s}} x_{1}^{i_{1}} \cdots x_{s}^{i_{s}} \mapsto \sum_{i_{1}, \cdots, i_{s}} a_{i_{1}, \cdots, i_{s}} \lambda_{1}^{i_{1}} \cdots \cdots \cdot \lambda_{s}^{i_{s}}
$$

Note that φ_{λ} is additive and can be extended to the matrix semiring over $\mathbb{N}\left[x_{1}, \cdots, x_{s}\right]$:

$$
\|-\|_{\lambda}: M_{n}\left(\mathbb{N}\left[x_{1}, \cdots, x_{s}\right]\right) \longrightarrow \mathbb{N}, \quad\left(a_{i j}\right)_{n \times n} \mapsto\left\|\left(a_{i j}\right)\right\|_{\lambda}:=\sum_{1 \leq i, j \leq n}\left(a_{i j}\right) \varphi_{\lambda},
$$

where $\left(a_{i j}\right) \varphi_{\lambda}$ denotes the image of $a_{i j}$ under φ_{λ}. The map $\|-\|_{\lambda}$ is called the norm map.

Now we recall the following fact in combinatorics [3, Theorem 6.1.1, Corollary 6.1.2, pp. 614-615].

Lemma 4.3. Let V_{i} be a finite set for $1 \leq i \leq s$. We define

$$
V:=\bigcup_{1 \leq j \leq s} V_{j}, \quad g_{i}:=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s}\left|V_{k_{1}} \cap \cdots \cap V_{k_{i}}\right|, 1 \leq i \leq s,
$$

where $|S|$ indicates the number of elements of a set S. Then
(1) For $1 \leq i \leq s$, the number h_{i} of the elements of V which are members of exactly i sets of $V_{1}, V_{2}, \cdots, V_{s}$ is given by $h_{i}=\sum_{k=0}^{s-i}(-1)^{k} C_{i+k}^{i} g_{i+k}$, where $C_{i+k}^{i}:=\binom{i+k}{i}=\frac{(i+k)!}{i!k!}$ is the number of i-subsets of an $(i+k)$-element set.
(2) Principle of Inclusion-Exclusion: $|V|=\sum_{i=1}^{s} h_{i}=\sum_{i=1}^{s}(-1)^{i+1} g_{i}$. Moreover, $\sum_{i=1}^{s}\left|V_{i}\right|=\sum_{i=1}^{s} i h_{i}$.

Let R be an algebraically closed field of characteristic $p \geq 0$, and let $\sigma \in \Sigma_{n}$ be of cycle type $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$. Suppose $p \nmid \lambda_{i}$ for $1 \leq i \leq s$. For $1 \leq i \leq s$, we denote by V_{i} the set of all λ_{i}-th roots of unity in R and define $V:=\bigcup_{1 \leq j \leq s} V_{j}$. It follows from $p \nmid \lambda_{i}$ that V_{i} is a cyclic group of order λ_{i}. Moreover,

$$
V_{k_{1}} \cap \cdots \cap V_{k_{i}}=\left\{\omega \in R \mid \omega^{d}=1\right\}
$$

for $1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s$, where $d:=\operatorname{gcd}\left(\lambda_{k_{1}}, \lambda_{k_{2}}, \cdots, \lambda_{k_{i}}\right)$ is the greatest common divisor of $\lambda_{k_{j}}, 1 \leq j \leq i$. Thus $\left|V_{k_{1}} \cap \cdots \cap V_{k_{i}}\right|=\operatorname{gcd}\left(\lambda_{k_{1}}, \lambda_{k_{2}}, \cdots, \lambda_{k_{i}}\right)$ for $1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s$. We further define

$$
g_{i}(\sigma):=\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s} \operatorname{gcd}\left(\lambda_{k_{1}}, \lambda_{k_{2}}, \cdots, \lambda_{k_{i}}\right),
$$

and $H_{i}(\sigma)$ to be the subset of V consisting of all elements which belong to exactly i sets of the given $V_{1}, V_{2}, \cdots, V_{s}$, namely

$$
H_{i}(\sigma)=\left\{v \in V \mid \exists 1 \leq k_{1}<k_{2}<\cdots<k_{i} \leq s, v \in \bigcap_{1 \leq j \leq i} V_{k_{j}}, v \notin \bigcup_{r \neq k_{j}, 1 \leq j \leq i} V_{r}\right\}
$$

Clearly, $H_{i}(\sigma) \cap H_{j}(\sigma)=\emptyset$ if $1 \leq i \neq j \leq s$. By Lemma 4.3(1), $h_{i}(\sigma):=\left|H_{i}(\sigma)\right|=$ $\sum_{k=0}^{s-i}(-1)^{k} C_{i+k}^{i} g_{i+k}(\sigma)$. Obviously, $g_{i}(\sigma)$ and $H_{i}(\sigma)$ depend merely on the cycle type of σ. So $g_{i}(\lambda)$ and $h_{i}(\lambda)$ are well-defined functions from the set of all partitions of positive integers to \mathbb{N} if we define $g_{i}=0$ and $h_{i}=0$ for $i>s$.

As in Example 4.2, we write $a \cdot b$ for $\operatorname{gcd}(a, b)$ for $a, b \in \mathbb{Z}$. Then $g_{i}\left(x_{1}, \cdots, x_{s}\right)$ is just the i-th elementary symmetric polynomial over the canonical quarter-ring of natural numbers:

$$
g_{i}\left(x_{1}, \cdots, x_{s}\right)=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq s} x_{j_{1}} \cdot x_{j_{2}}, \cdots \cdot x_{j_{i}}
$$

for $1 \leq i \leq s$. We set $g_{0}\left(x_{1}, \cdots, x_{s}\right)=g_{i}\left(x_{1}, \cdots, x_{s}\right)=0$ for $i>s$. Clearly, $g_{i}\left(x_{1}, \cdots, x_{s}\right)$ does not depend on any order of $x_{1} \geq x_{2} \geq \cdots \geq x_{s}$, and $g_{s}\left(x_{1}, \cdots, x_{s}\right) \mid g_{i}\left(x_{1}, \cdots, x_{s}\right)$ for $1 \leq i \leq s$ and all $x_{i} \in \mathbb{N}$.

Recall that a partition λ of a positive integer n is an s-tuple ($\lambda_{1}, \cdots, \lambda_{s}$) of integers satisfying $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{s} \geq 1$ and $\sum_{i=1}^{s} \lambda_{i}=n$. We write $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right) \vdash n$ for simplicity. Each λ_{i} is called a part of λ. Sometimes it is also convenient to think of partitions as multisets and to write λ in the form $\left(\lambda_{1}^{a_{1}}, \lambda_{2}^{a_{2}}, \cdots, \lambda_{t}^{a_{t}}\right)$ with $\lambda_{1}>\lambda_{2}>$ $\cdots>\lambda_{t} \geq 1$, where λ_{i} appears $a_{i} \geq 1$ times in the multiset of λ.

Let $P(n)$ be the set of all partitions of $n, P(s, n)$ the set of partitions of n with exactly s parts, and $P_{s}^{*}(n)$ the set of partitions of n with the largest part s. Then $P(s, n)$ and $P_{s}^{*}(n)$ have the same cardinality. This can be seen from Ferrers graphs (or Young diagrams) of partitions.

Convention: Given partitions $\lambda \in P(n)$ and $\mu \in P(m)$, we write (λ, μ) for the partition $\gamma \in P(n+m)$ such that the parts of γ are the disjoint union of the parts of λ with the parts of μ. For example, if $\lambda=(4,3,2,1)$ and $\mu=(5,4,4,2,2,1,1)$, then $(\lambda, \mu)=$ $(5,4,4,4,3,2,2,2,1,1,1)$. For $1 \leq d \in \mathbb{N}$, we define $d \lambda=\left(d \lambda_{1}, \cdots, d \lambda_{s}\right) \in P(s, d n)$ and $\lambda_{-}:=\left(\lambda_{1}, \cdots, \lambda_{s-1}\right)=\left(\lambda_{1}, \cdots, \lambda_{s-1}, \hat{\lambda}_{s}\right) \in P\left(s-1, n-\lambda_{s}\right)$. Inductively, $\lambda_{-j}=$ $\left(\lambda_{1}, \cdots, \lambda_{s-j}\right)$. If $j \geq s$, we define $\lambda_{s-j}=(0, \cdots, 0)$. Then $g_{i}(d \lambda)=d g_{i}(\lambda)$, and

$$
\begin{aligned}
g_{i}(\lambda) & =g_{i}\left(\lambda_{-}\right)+\sum_{1 \leq j_{1}<\cdots<j_{i-1} \leq s-1} \lambda_{j_{1}} \cdots \cdot \lambda_{j_{i-1}} \cdot \lambda_{s} \\
& \leq g_{i}\left(\lambda_{-}\right)+\sum_{1 \leq j_{1}<\cdots<j_{i-1} \leq s-1} \lambda_{j_{1}} \cdots \cdot \lambda_{j_{i-1}},
\end{aligned}
$$

and therefore, if $\lambda_{s}=1$, then $g_{i}(\lambda)=g_{i}\left(\lambda_{-}\right)+C_{s-1}^{i-1}$. In general, we have

$$
g_{i}\left(\lambda_{-}\right)+C_{s-1}^{i-1} \leq g_{i}(\lambda) \leq g_{i}\left(\lambda_{-}\right)+\min \left\{g_{i-1}\left(\lambda_{-}\right), \lambda_{s} C_{s-1}^{i-1}\right\} .
$$

Now, we introduce a new equivalence relation \sim on $P(s, n)$ and define a polynomial $\varepsilon_{\lambda}(x)$ for each $\lambda \vdash n$.

Definition 4.4. (1) The partition polynomial $\varepsilon_{\lambda}(x)$ of $\lambda \in P(s, n)$ is

$$
\begin{aligned}
\varepsilon_{\lambda}(x):=\sum_{i=0}^{s-1}(-1)^{s-1-i} \frac{g_{i+1}(\lambda)}{g_{s}(\lambda)} x^{i}= & x^{s-1}-\frac{g_{s-1}(\lambda)}{g_{s}(\lambda)} x^{s-2}+\cdots \\
& +(-1)^{s-2} \frac{g_{2}(\lambda)}{g_{s}(\lambda)} x+(-1)^{s-1} \frac{g_{1}(\lambda)}{g_{s}(\lambda)} \in \mathbb{Z}[x] .
\end{aligned}
$$

(2) The equivalence relation \sim on $P(s, n)$ (or $P(n)$) is given by

$$
\lambda \sim \mu \text { if } \varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)
$$

Equivalently, $\lambda \sim \mu$ if and only if $g_{i}(\lambda) g_{s}(\mu)=g_{s}(\lambda) g_{i}(\mu)$ for $1 \leq i \leq s$. This equivalence relation is called the polynomial equivalence of partitions in $P(n)$.

Example 4.5. (1) $\varepsilon_{\left(1^{n}\right)}(x)=\sum_{i=0}^{n-1}(-1)^{n-1-i} C_{n}^{i+1} x^{i}$, while $\varepsilon_{\left(m, 1^{n-m}\right)}(x)=$ $\sum_{i=1}^{n-m}(-1)^{n-m-i} C_{n-m+1}^{i+1} x^{i}+(-1)^{n-m} n$ for $1 \leq m<n$ and $\varepsilon_{(n)}(x)=1$.
(2) In $P(2, p)$ with p a prime, any two-part partitions are polynomial equivalent because the partition polynomial of each such partition is of the form $x-p$. In $P(3,11)$, there hold $(8,2,1) \sim(7,2,2) \sim(6,4,1) \sim(5,4,2)$, but $(8,2,1) \nsim(6,3,2)$.

Remark that $(-1)^{s-1} g_{s}(\lambda) \varepsilon_{\lambda}(1)$ counts the number of distinct eigenvalues of c_{σ} in \mathbb{C}, where $\sigma \in \Sigma_{n}$ has the cycle type λ (see [19, Lemma 6.3]). Next, we consider when two partitions are polynomial equivalent. We first give a matrix interpretation of the polynomial equivalence.

Definition 4.6. Given $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right) \in P(s, n)$, we associate it with a matrix $\Lambda_{\lambda} \in$ $M_{s}(\mathbb{N})$ by setting

$$
\Lambda_{\lambda}:=\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & \ldots & d_{1 s} \\
0 & 0 & d_{23} & \cdots & d_{2 s} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & d_{s-1, s} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

where $d_{i j}=\lambda_{i} \cdot \lambda_{j}$ is the product in the canonical quarter-ring of natural numbers. This matrix is called the triangular divisor matrix of λ.

Now we define a norm $\left\|\Lambda_{\lambda}\right\|$ of Λ_{λ}. First, we consider $\lambda_{j}, 1 \leq j \leq s$, as variables and then regard Λ_{λ} as a matrix with the entries in the polynomial semiring $\mathbb{N}\left[\lambda_{1}, \cdots, \lambda_{s}\right]$, thinking of $\lambda_{i} \cdot \lambda_{j}$ as the usual monomial $\lambda_{i} \lambda_{j}$ in $\mathbb{N}\left[\lambda_{1}, \cdots, \lambda_{s}\right]$. By applying $\|-\|_{\lambda}$ to this matrix, we get the norm $\left\|\Lambda_{\lambda}\right\|$ of the triangular divisor matrix Λ_{λ}. That is, $\left\|\Lambda_{\lambda}\right\|=\sum_{1 \leq i<j \leq s} \lambda_{i} \cdot \lambda_{j}$. Similarly, we consider the i-th power Λ_{λ}^{i} of Λ_{λ} in the $s \times s$
matrix semiring $M_{s}\left(\mathbb{N}\left[\lambda_{1}, \cdots, \lambda_{s}\right]\right)$ over $\mathbb{N}\left[\lambda_{1}, \cdots, \lambda_{s}\right]$ and then define $\left\|\Lambda_{\lambda}^{i}\right\|:=\left\|\Lambda_{\lambda}^{i}\right\|_{\lambda}=$ $\left(\Lambda_{\lambda}^{i}\right) \varphi_{\lambda}$. Note that $\operatorname{dim}_{R} S_{n}(\lambda, R)=g_{1}(\lambda)+2\left\|\Lambda_{\lambda}\right\|($ see Lemma 2.3(1)).

The triangular divisor matrix Λ_{λ} of λ depends upon the ordering of $\lambda_{1}, \cdots, \lambda_{s}$. Nevertheless, we will show that the norms $\|-\|$ of triangular divisor matrices are independent of the choices of orderings.

Proposition 4.7. Let $\lambda, \mu \in P(s, n)$. Then
(1) $\left\|\Lambda_{\lambda}^{i}\right\|=g_{i+1}(\lambda)$ for $1 \leq i \leq s-1$.
(2) $\lambda \sim \mu$ if and only if $\left\|\Lambda_{\lambda}^{i}\right\|=\left\|\Lambda_{\mu}^{i}\right\|$ for all $1 \leq i \leq s-1$, that is, the norms of Λ_{λ}^{i} and Λ_{μ}^{i} are equal for all $1 \leq i \leq s-1$.

Proof. (1) We check $\left\|\Lambda_{\lambda}^{i}\right\|=g_{i+1}(\lambda)$ for $1 \leq i \leq s-1$. Since the summands of $\left\|\Lambda_{\lambda}^{i}\right\|=$ $\left\|\Lambda_{\lambda}^{i-1} \Lambda_{\lambda}\right\|$ are of the form $\lambda_{j_{1}} \cdots \cdot \lambda_{j_{i}} \cdot \lambda_{j_{i+1}}$ with $j_{1}<\cdots<j_{i}<j_{i+1}$, these are precisely the summands of $g_{i+1}(\lambda)$. Hence $\left\|\Lambda_{\lambda}^{i}\right\|=g_{i+1}(\lambda)$.
(2) Clearly, $g_{1}(\lambda)=g_{1}(\mu)=n$. Hence $g_{j}(\lambda)=g_{j}(\mu)$ for all $1 \leq j \leq s$ if and only if $\left\|\Lambda_{\lambda}^{i}\right\|=\left\|\Lambda_{\mu}^{i}\right\|$ for all $1 \leq i \leq s-1$.

An immediate consequence of Proposition 4.7 is that if $\left\{\mu_{1}, \cdots, \mu_{s}\right\}$ is a permutation of $\left\{\lambda_{1}, \cdots, \lambda_{s}\right\}$ then $\left\|\Lambda_{\lambda}^{i}\right\|=\left\|\Lambda_{\mu}^{i}\right\|$ for all $1 \leq i \leq s-1$ because the i-th elementary symmetric polynomial $g_{i}(\lambda)$ does not depend on the ordering of its variables λ_{i}.

Another consequence is the following result which is quite useful for deciding whether two partitions are polynomial equivalent.

Corollary 4.8. Let $\lambda, \mu \in P(s, n)$ with the corresponding triangular divisor matrices $\Lambda_{\lambda}=$ $\left(d_{i j}\right)$ and $\Lambda_{\mu}=\left(c_{i j}\right)$, respectively. If the multisets $\left\{d_{i j} \mid 1 \leq i<j \leq s\right\}$ and $\left\{c_{i j} \mid 1 \leq\right.$ $i<j \leq s\}$ are equal, then $\lambda \sim \mu$.

Proof. That the multisets $\left\{d_{i j} \mid 1 \leq i<j \leq s\right\}$ and $\left\{c_{i j} \mid 1 \leq i<j \leq s\right\}$ are equal means $g_{2}(\lambda)=g_{2}(\mu)$. Since any summand $\lambda_{j_{1}} \cdot \lambda_{j_{2}} \cdots \cdot \lambda_{j_{i}}$ of $g_{i}(\lambda)$ for $i \geq 3$ is a product $d_{j_{1}, j_{2}} \cdot d_{j_{2}, j_{3}} \cdots \cdot d_{j_{i-1}, j_{i}}$ (in the canonical quarter-ring ($\left.\mathbb{N},+,.\right)$ of $i-1$ elements of the multiset $\left\{d_{i j} \mid 1 \leq i<j \leq s\right\}$ with the increasing indices, the summation of all such products of elements in the multiset of λ equals the one in the multiset of μ. Hence $g_{i}(\lambda)=g_{i}(\mu)$ for $2 \leq i \leq s$. Clearly, $g_{1}(\lambda)=g_{1}(\mu)$. Thus $\lambda \sim \mu$.

Note that the converse of Lemma 4.8 fails. For example, $\lambda=(12,4,3,1) \sim$ $\mu=(10,5,3,2)$, but the corresponding multisets for λ and μ are $\{4,3,1,1,1,1\}$ and $\{5,1,2,1,1,1\}$, respectively, they are clearly different. This example also shows that if the common part 3 is removed from λ and μ, then the resulting partitions $(12,4,1)$ and $(10,5,2)$ are no longer polynomial equivalent.

Corollary 4.9. Let $\lambda=\left(\lambda_{1}, \cdots, \lambda_{s}\right), \mu=\left(\mu_{1}, \cdots, \mu_{s}\right) \in P(s, n)$. If $\lambda_{i} \cdot \lambda_{j}=d=\mu_{p} \cdot \mu_{q}$ for all $1 \leq i \neq j \leq s$ and $1 \leq p \neq q \leq s$, then $\lambda \sim \mu$. In particular, if $\lambda_{1}, \cdots, \lambda_{s}$ are pairwise coprime and if $\mu_{1}, \cdots, \mu_{\text {s }}$ are pairwise coprime, then $\lambda \sim \mu$.

Proof. Under the assumption, the triangular divisor matrices Λ_{λ} and Λ_{μ} are equal. Hence Corollary 4.9 follows immediately from Corollary 4.8.

By the definition of partition polynomials $\varepsilon_{\lambda}(x)$, we have the following useful fact, which implies that, when considering $\lambda \sim \mu$, we can always assume that $\lambda_{1}, \cdots, \lambda_{s}$ are coprime and that μ_{1}, \cdots, μ_{s} are coprime. By $d \lambda$ we mean $\left(d \lambda_{1}, d \lambda_{2}, \cdots, d \lambda_{s}\right)$.

Lemma 4.10. Let $\lambda, \mu \in P(s, n)$. Then $\lambda \sim \mu$ in $P(s, n)$ if and only if $d \lambda \sim d \mu$ in $P(s, d n)$ for some integer $d \geq 1$ if and only if $d \lambda \sim d \mu$ in $P(s, d n)$ for all integers $d \geq 1$.

Proof. The coefficients of the monic partition polynomial $\varepsilon_{d \lambda}(x)$ are given by $g_{i}(d \lambda) /$ $g_{s}(d \lambda)$. As we know, $g_{i}(d \lambda)=d g_{i}(\lambda)$ for all i. Thus $\varepsilon_{d \lambda}(x)=\varepsilon_{\lambda}(x)$.

Lemma 4.11. Let $\lambda, \mu \in P(s, n)$ and $1 \leq m \in \mathbb{N}$ such that $\left\{\lambda_{j} . m \mid 1 \leq i \leq s\right\}=\left\{\mu_{j} . m \mid\right.$ $1 \leq j \leq s\}$ as multisets. Then $\lambda \sim \mu$ if and only if $(\lambda, m) \sim(\mu, m)$ in $P(s+1, n+m)$. In particular, suppose $\lambda_{j} \cdot m=d=\mu_{j} \cdot m$ for $1 \leq j \leq s$. Then $\lambda \sim \mu$ if and only if $\left(\frac{\lambda}{d}, \frac{m}{d}\right) \sim\left(\frac{\mu}{d}, \frac{m}{d}\right)$ in $P\left(s+1, \frac{n+m}{d}\right)$.

Proof. The last conclusion in Lemma 4.11 follows from Lemma 4.10. We prove the other one. Let $\bar{\lambda}=(\lambda, m) \in P(s+1, n+m)$. Since the multisets $\left\{\lambda_{j} \cdot m \mid 1 \leq i \leq s\right\}$ and $\left\{\mu_{j} \cdot m \mid 1 \leq j \leq s\right\}$ are equal, the summation $\sum_{j_{1}<j_{2}<\cdots<j_{i-1}}\left(\lambda_{j_{1}} \cdot m\right) \cdot \cdots \cdot\left(\lambda_{j_{i-1}} \cdot m\right)$ is equal to $\sum_{j_{1}<j_{2}<\cdots<j_{i-1}}\left(\mu_{j_{1}} \cdot m\right) \cdots \cdot\left(\mu_{j_{i-1}} \cdot m\right)$. In particular, $g_{s+1}(\bar{\lambda})=g_{s+1}(\bar{\mu})$. Clearly, for $1 \leq i \leq s$, we have

$$
\begin{aligned}
g_{i}(\bar{\lambda}) & =g_{i}(\lambda)+\sum_{1 \leq j_{i}<\cdots<j_{i-1} \leq s} \lambda_{j_{1}} \cdots \cdot \lambda_{j_{i-1}} \cdot m \\
& =g_{i}(\lambda)+\sum_{1 \leq j_{i}<\cdots<j_{i-1} \leq s}\left(\lambda_{j_{1}} \cdot m\right) \cdots \cdot\left(\lambda_{j_{i-1}} \cdot m\right) .
\end{aligned}
$$

Thus, for $1 \leq i \leq s, g_{i}(\bar{\lambda})=g_{i}(\bar{\mu})$ if and only if $g_{i}(\lambda)=g_{i}(\mu)$. This shows Lemma 4.11.

A special case of Lemma 4.11 is that $\lambda \sim \mu$ if and only if $(\lambda, 1) \sim(\mu, 1)$. A slightly generalized form of the last statement of Lemma 4.11 is as follows.

Lemma 4.12. Assume $\lambda \sim \mu$ in $P(s, n)$ and $\gamma \sim \delta$ in $P(t, m)$. If $\lambda_{i} \cdot \gamma_{j}=\mu_{p} \cdot \delta_{q}$ for all $1 \leq i, p \leq s, 1 \leq j, q \leq t$, then $(\lambda, \gamma) \sim(\mu, \delta)$ in $P(s+t, n+m)$.

Proof. By assumption, we suppose $d:=\lambda_{i} \cdot \gamma_{j}=\mu_{p} \cdot \delta_{q}$. Now, let $\bar{\lambda}=(\lambda, \gamma)$ and $\bar{\mu}=(\mu, \delta)$. We calculate $g_{i}(\bar{\lambda})$ and $g_{i}(\bar{\mu})$ for $1 \leq i \leq s+t$. Clearly, $g_{1}(\lambda, \gamma)=g_{1}(\mu, \delta)$ and $g_{s+t}(\lambda, \gamma)=g_{s+t}(\mu, \delta)$. We may assume $s \leq t$ and consider the following cases.
(1) $1<i \leq s \leq t$.

$$
\begin{aligned}
g_{i}(\bar{\lambda}) & =\sum_{1 \leq j_{1}<\cdots<j_{i} \leq s} \lambda_{j_{1}} \cdots \cdots \cdot \lambda_{j_{i}}+\sum_{1 \leq k_{1}<\cdots<k_{i} \leq t} \gamma_{k_{1}} \cdots \cdot \gamma_{k_{i}} \\
& +\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \lambda_{j_{1}} \cdot \cdots \cdot \lambda_{j_{p}} \cdot \gamma_{k_{1}} \cdots \cdots \cdot \gamma_{k_{q}} \\
& =g_{i}(\lambda)+g_{i}(\gamma)+\sum_{(p, q): p+q=i, 1 \leq p \leq s, 1 \leq q \leq t} d C_{s}^{p} C_{t}^{q} \\
= & g_{i}(\mu)+g_{i}(\delta)+\sum_{(p, q): p+q=i, 1 \leq p \leq s, 1 \leq q \leq t} d C_{s}^{p} C_{t}^{q} \\
= & g_{i}(\mu)+g_{i}(\delta) \\
& +\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \mu_{j_{1}} \cdots \cdots \cdot \mu_{j_{p}} \cdot \delta_{k_{1}} \cdots \cdots \cdot \delta_{k_{q}} \\
= & g_{i}(\bar{\mu}) .
\end{aligned}
$$

(2) $s+1 \leq i<s+t$. In this case, we first assume $i \leq t$. Then

$$
\begin{aligned}
g_{i}(\bar{\lambda}) & =\sum_{1 \leq k_{1}<\cdots<k_{i} \leq t} \gamma_{k_{1}} \cdots \cdots \cdot \gamma_{k_{i}} \\
& +\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \lambda_{j_{1}}, \cdots \cdot \lambda_{j_{p}} \cdot \gamma_{k_{1}} \cdots \cdots \cdot \gamma_{k_{q}} \\
& =g_{i}(\gamma)+\sum_{(p, q): p+q=i, 1 \leq p \leq s, 1 \leq q \leq t} d C_{s}^{p} C_{t}^{q} \\
& =g_{i}(\delta)+\sum_{(p, q): p+q=i, 1 \leq p \leq s, 1 \leq q \leq t} d C_{s}^{p} C_{t}^{q} \\
& =g_{i}(\delta)+\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \mu_{j_{1}} \cdots \cdots \cdot \mu_{j_{p}} \cdot \delta_{k_{1}} \cdots \cdots \cdot \delta_{k_{q}} \\
& =g_{i}(\bar{\mu}) .
\end{aligned}
$$

Next, we assume $t<i$. Then

$$
\begin{aligned}
g_{i}(\bar{\lambda}) & =\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{(p, q): p+q=i, 1 \leq p \leq s, 1 \leq q \leq t} d C_{s}^{p} C_{t}^{q} \\
& =\sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \lambda_{j_{1}} \cdots \cdot \lambda_{j_{p}} \cdot \gamma_{k_{1}} \cdots \cdot \gamma_{k_{q}} \\
& =\sum_{(p, q): p+q=i, 1 \leq p, q \leq i} \sum_{1 \leq j_{1}<\cdots<j_{p} \leq s, 1 \leq k_{1}<\cdots<k_{q} \leq t} \mu_{j_{1}} \cdots \cdot \mu_{j_{p}} \cdot \delta_{k_{1}} \cdots \cdots, \delta_{k_{q}} \\
& =g_{i}(\bar{\mu}) .
\end{aligned}
$$

Thus $g_{i}(\bar{\lambda})=g_{i}(\bar{\mu})$ for all $1 \leq i \leq s+t$.
Finally, we point out that, for $\lambda \in P(s, n), g_{i+1}(\lambda)$ can be calculated graphically by defining a valued quiver Q_{λ} and writing out all paths of length i, and then summarizing all evaluations of the paths in $(\mathbb{N},+,$.$) . For i=0$, we understand $g_{1}(\lambda)=\sum_{i=1}^{s} \lambda_{i}=n$. The quiver Q_{λ} has the vertex set $\{1,2, \cdots, s\}$, and for $i<j$, there is an arrow from i to j valued $d_{i j}$. For instance, $\lambda=(12,4,3,1)$, the quiver Q_{λ} is

Thus $g_{4}(\lambda)=4.1 .1=1, g_{3}(\lambda)=4.1+4.1+3.1+1.1=4, g_{2}(\lambda)=4+3+1+1+1+1=$ $11, g_{1}(\lambda)=20$.

4.2. Isomorphisms of invariant matrix algebras

This section is devoted to a proof of Theorem 1.2. We first show an auxiliary lemma.

Lemma 4.13. Let R be a division ring of characteristic $p \geq 0$, and let $\sigma \in \Sigma_{n}$ be of cycle type $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ with $\lambda_{i} \geq 1$ for all $1 \leq i \leq s$. Then
(1) $S_{n}(\sigma, R)$ is semisimple if and only if $p \nmid \lambda_{i}$ for $1 \leq i \leq s$.
(2) If R is an algebraically closed field and $S_{n}(\sigma, R)$ is semisimple, then

$$
S_{n}(\sigma, R) \simeq R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)}
$$

as algebras, where $R^{\oplus h_{1}(\sigma)}$ denotes the direct product of $h_{1}(\sigma)$ copies of the ring R.
Proof. (1) Clearly, $M_{n}(R)$ is a simple artinian ring if R is a division ring. Let $\operatorname{rad}(A)$ denote the Jacobson radical of a ring A. If $S_{n}(\sigma, R)$ is semisimple, that is $\operatorname{rad}\left(S_{n}(\sigma, R)\right)=$ 0 , then $\operatorname{rad}\left(f_{i} S_{n}(\sigma, R) f_{i}\right)=f_{i} \operatorname{rad}\left(S_{n}(\sigma, R)\right) f_{i}=0$ for all $1 \leq i \leq s$. This means that all $f_{i} S_{n}(\sigma, R) f_{i}$ are semisimple. By Lemma 2.5(1), the group algebra $R\left[C_{\lambda_{i}}\right]$ is semisimple. Hence $p \nmid \lambda_{i}$ for all i. Conversely, if $p \nmid \lambda_{i}$ for all i, then p does not divide the least common multiple of $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}$, that is, the order of $G=\langle\sigma\rangle$ is invertible in R. In this case, $S_{n}(\sigma, R)$ is semisimple by [14, Theorem 1.15, p. 15], which says that if a finite group acts on a semisimple artinian ring with its order invertible in the ring, then the ring of invariants is semisimple.
(2) Let $c_{\sigma}:=e_{1,(1) \sigma}+e_{2,(2) \sigma}+\cdots+e_{n,(n) \sigma}$ be the permutation matrix in $M_{n}(R)$ corresponding to σ. Then $c_{\sigma}=\operatorname{diag}\left\{c_{\sigma_{1}}, c_{\sigma_{2}}, \cdots, c_{\sigma_{s}}\right\}$, where $c_{\sigma_{i}} \in M_{\lambda_{i}}(R)$ is defined similarly. For $1 \leq i \leq s$, the eigenvalues of $c_{\sigma_{i}}$ are distinct and denoted by V_{i}. Hence the Jordan canonical form of $c_{\sigma_{i}}$ has only Jordan blocks of order 1, namely the diagonal
matrix $\operatorname{diag}\left(1, \omega_{i}, \cdots, \omega_{i}^{\lambda_{i}-1}\right)$, where ω_{i} is a primitive root of the unity of order λ_{i} in R. This implies that the Jordan canonical form of c_{σ} is the diagonal matrix

$$
c:=\operatorname{diag}\left(1, \omega_{1}, \cdots, \omega_{1}^{\lambda_{1}-1}, \cdots, 1, \omega_{i}, \cdots, \omega_{i}^{\lambda_{i}-1}, \cdots, 1, \omega_{s}, \cdots, \omega_{s}^{\lambda_{s}-1}\right)
$$

For $1 \leq i \leq s$, we write $H_{i}(\sigma)=\left\{r_{i 1}, r_{i 2}, \cdots, r_{i h_{i}(\sigma)}\right\}$ (see the notation above Definition 4.4). Then the algebraic and geometric multiplicities of the eigenvalue $r_{i j}$ of c_{σ} are just i for $1 \leq j \leq h_{i}(\sigma)$. Thus c is similar to

$$
\begin{gathered}
d:=\operatorname{diag}\left(r_{11} I_{1}, r_{12} I_{1}, \cdots, r_{1 h_{1}(\sigma)} I_{1}, \cdots, r_{i 1} I_{i}, r_{i 2} I_{i}, \cdots, r_{i h_{i}(\sigma)} I_{i}, \cdots,\right. \\
\left.r_{s 1} I_{s}, r_{s 2} I_{s}, \cdots, r_{s h_{s}(\sigma)} I_{s}\right)
\end{gathered}
$$

with $\sum_{i=1}^{s} i h_{i}(\sigma)=n$. Recall that I_{i} denotes the identity matrix in $M_{i}(R)$. Hence the matrix c_{σ} is similar to the matrix d. By Lemma 2.2 (see also [24, Lemma 2.1]), $S_{n}(\sigma, R)=S_{n}\left(c_{\sigma}, R\right):=\left\{x \in M_{n}(R) \mid x c_{\sigma}=c_{\sigma} x\right\} \simeq S_{n}(d, R):=\left\{x \in M_{n}(R) \mid\right.$ $x d=d x\}$ as algebras. Note that $r_{i j} \neq r_{k l}$ for $(i, j) \neq(k, l)$ with $1 \leq i, k \leq s, 1 \leq$ $j \leq h_{i}(\sigma), 1 \leq l \leq h_{k}(\sigma)$. It follows from [24, Lemma 2.2] that the centralizer algebra $S_{n}(d, R)$ is isomorphic to $R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)}$. Thus $S_{n}(\sigma, R) \simeq$ $R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)}$ as algebras.

Lemma 4.13(2) shows that the multiplicity of the matrix algebra $M_{i}(R)$ in a Wedderburn decomposition of the semisimple algebra $S_{n}(\lambda, R)$ is given by $h_{i}(\lambda)$.

Recall that two rings R and S are said to be Morita equivalent if the two categories R-Mod and S-Mod (or equivalently R-mod and S-mod) are equivalent.

Proof of Theorem 1.2. (1) follows from Lemma 4.13(1).
(2) Assume that R is an algebraically closed field and that $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are semisimple. By Lemma 4.13(2), we have

$$
S_{n}(\sigma, R) \simeq R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)}
$$

and

$$
S_{m}(\tau, R) \simeq R^{\oplus h_{1}(\tau)} \times M_{2}(R)^{\oplus h_{2}(\tau)} \times \cdots \times M_{t}(R)^{\oplus h_{t}(\tau)}
$$

(i) It follows from $h_{i}(\sigma) \geq 0, h_{i}(\tau) \geq 0$ for $1 \leq i \leq s, h_{s}(\sigma)=\lambda_{1} \cdot \cdots \cdot \lambda_{s} \neq 0$ and $h_{t}(\tau) \neq 0$ that
$R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)} \simeq R^{\oplus h_{1}(\tau)} \times M_{2}(R)^{\oplus h_{2}(\tau)} \times \cdots \times M_{t}(R)^{\oplus h_{t}(\tau)}$
as algebras if and only if $s=t$ and $h_{i}(\sigma)=h_{i}(\tau)$ for all $1 \leq i \leq s$.
Suppose $S_{n}(\sigma, R) \simeq S_{m}(\tau, R)$, that is, we assume that $s=t$ and $h_{i}(\sigma)=h_{i}(\tau)$ for all i. We show that $m=n$ and $\varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)$. In fact, since $\sum_{i=1}^{s} i h_{i}(\sigma)=n$
and $\sum_{i=1}^{t} i h_{i}(\tau)=m$, we have $m=n$. By the definitions of $h_{s}(\sigma)$ and $h_{s}(\tau)$, we get $h_{s}(\sigma)=g_{s}(\sigma)$ and $h_{s}(\tau)=g_{s}(\tau)$. It follows from $h_{s}(\sigma)=h_{s}(\tau)$ that $g_{s}(\sigma)=g_{s}(\tau)$. Now, by the definitions $h_{s-1}(\sigma)$ and $h_{s-1}(\tau)$ and Lemma 4.3(1), we have $h_{s-1}(\sigma)=$ $g_{s-1}(\sigma)-C_{s}^{s-1} g_{s}(\sigma)$ and $h_{s-1}(\tau)=g_{s-1}(\tau)-C_{s}^{s-1} g_{s}(\tau)$. It then follows from $h_{s-1}(\sigma)=$ $h_{s-1}(\tau)$ and $g_{s}(\sigma)=g_{s}(\tau)$ that $g_{s-1}(\sigma)=g_{s-1}(\tau)$. Continuing this procedure, we get $g_{i}(\sigma)=g_{i}(\tau)$ for $1 \leq i \leq s-2$. Thus, if $h_{i}(\sigma)=h_{i}(\tau)$ for $1 \leq i \leq s$, then $g_{i}(\sigma)=g_{i}(\tau)$ for $1 \leq i \leq s$ and $\varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)$.

Conversely, if $m=n$ and $\varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)$, then $s=t$ and $g_{s}(\tau) g_{i}(\sigma)=g_{s}(\sigma) g_{i}(\tau)$ for $1 \leq i \leq s-1$. As $g_{1}(\sigma)=n=m=g_{1}(\mu)$, we get $g_{s}(\sigma)=g_{s}(\tau)$. Thus it follows from $\varepsilon_{\lambda}(x)=\varepsilon_{\mu}(x)$ that $g_{i}(\sigma)=g_{i}(\tau)$ for all $1 \leq i \leq s$. By Lemma 4.3(2), we obtain $h_{i}(\sigma)=h_{i}(\tau)$ for all i. Hence $S_{n}(\sigma, R) \simeq S_{m}(\tau, R)$.
(ii) Since $S_{n}(\sigma, R) \simeq R^{\oplus h_{1}(\sigma)} \times M_{2}(R)^{\oplus h_{2}(\sigma)} \times \cdots \times M_{s}(R)^{\oplus h_{s}(\sigma)}$ by Lemma 4.13(2), the basic algebra $B(\sigma)$ of $S_{n}(\sigma, R)$ is isomorphic to $R^{\oplus h_{1}(\sigma)} \times R^{\oplus h_{2}(\sigma)} \times \cdots \times R^{\oplus h_{s}(\sigma)}$. As is known, $S_{n}(\sigma, R)$ and $B(\sigma)$ are always Morita equivalent, while $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are Morita equivalent if and only if their basic algebras $B(\sigma)$ and $B(\tau)$ are isomorphic. Clearly, $B(\sigma) \simeq B(\tau)$ if and only if $\sum_{i=1}^{s} h_{i}(\sigma)=\sum_{i=1}^{t} h_{i}(\tau)$. By Lemma 4.3(2), $\sum_{i=1}^{s} h_{i}(\sigma)=\sum_{i=1}^{t} h_{i}(\tau)$ if and only if the matrices c_{σ} and c_{τ} have the same number of distinct eigenvalues in R if and only if $\sum_{i=1}^{s}(-1)^{i+1} g_{i}(\sigma)=\sum_{i=1}^{t}(-1)^{i+1} g_{i}(\tau)$. Therefore $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are Morita equivalent if and only if $\sum_{i=1}^{s}(-1)^{i+1} g_{i}(\sigma)=$ $\sum_{i=1}^{t}(-1)^{i+1} g_{i}(\tau)$ if and only if $(-1)^{s-1} g_{s}(\sigma) \varepsilon_{\lambda}(1)=(-1)^{t-1} g_{t}(\tau) \varepsilon_{\mu}(1)$. Note that $g_{s}(\sigma)$ is the greatest common divisor of $\lambda_{1}, \cdots, \lambda_{s}$.

Theorem 1.2 tells us that the foregoing consideration on the polynomial equivalence $\lambda \sim \mu$ in $P(s, n)$ provides us with many isomorphisms of invariant matrix algebras. For example, $S_{38}((17,11,8,2), \mathbb{C}) \simeq S_{38}((17,11,6,4), \mathbb{C})$ by repeatedly applying Corollary 4.11 to the polynomial equivalence $(8,2) \sim(6,4)$ in $P(2,10)$. Also, for any prime number $p \geq 5$ and two-part partitions λ and μ of p, it follows from Theorem 1.2 that $S_{p}(\lambda, \mathbb{C}) \simeq S_{p}(\mu, \mathbb{C})$. For instance, $S_{5}((4,1), \mathbb{C}) \simeq S_{5}((3,2), \mathbb{C}) \simeq \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times M_{2}(\mathbb{C})$.

Remark that the condition $m=n$ in Theorem 1.2(2)(i) is needed. For example, both $\lambda=(4,2,2)$ and $\mu=(2,1,1)$ have the same partition polynomial $x^{2}-3 x+4$, but $S_{8}(\lambda, R) \not 千 S_{4}(\mu, R)$ for any ring R.

As a consequence of Theorem 1.2 and Corollary 4.9. we have the corollary immediately.

Corollary 4.14. Let R be an algebraically closed field of characteristic $p \geq 0$, and let $\sigma \in \Sigma_{n}$ and $\tau \in \Sigma_{m}$ be of cycle types $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ and $\left(\mu_{1}, \mu_{2}, \cdots, \mu_{t}\right)$, respectively. Assume that $p \nmid \lambda_{i}$ and $p \nmid \mu_{j}$ for $1 \leq i \leq s$ and $1 \leq i \leq t$. If $\lambda_{1}, \cdots, \lambda_{s}$ are pairwise coprime and if μ_{1}, \cdots, μ_{t} are pairwise coprime, then
(1) $S_{n}(\sigma, R) \simeq S_{m}(\tau, R)$ if and only if $n=m$ and $s=t$.
(2) $S_{n}(\sigma, R)$ and $S_{m}(\tau, R)$ are Morita equivalent if and only if $n-s=m-t$.

Finally, we mention that there are a few issues worthy of further consideration, which have directly been suggested in this section but not answered. We formalize some of them as the following questions.

Questions. (1) When are $S_{n}(\lambda, R)$ and $S_{n}(\mu, R)$ isomorphic (or derived equivalent) for $\lambda, \mu \in P(s, n)$ and R a unitary ring?
(2) Given a polynomial $f(x)=x^{s-1}-a_{s-2} x^{s-2}+\cdots+(-1)^{s-i-1} a_{i} x^{i}+\cdots+$ $(-1)^{s-2} a_{1} x+(-1)^{s-1} a_{0} \in \mathbb{Z}[x]$ with $s \geq 3$ and $a_{i} \geq C_{s}^{i+1}$ for $1 \leq i \leq s-2$, is there a partition $\lambda \in P(s, n)$ for some n such that $\varepsilon_{\lambda}(x)=f(x)$? In other words, what are the necessary and sufficient conditions for a monic polynomial $f(x)$ to be a partition polynomial?
(3) Are $\varepsilon_{\lambda}(x) \varepsilon_{\mu}(x)$ and $\varepsilon_{\lambda}\left(\varepsilon_{\mu}(x)\right)$ again partition polynomials? Or more generally, how do the operations of partitions correspond to the ones of partition polynomials?
(4) Let $I(s, n)$ be the set of equivalence classes of $P(s, n)$ with respect to the polynomial equivalence relation. Then $I(s, n)$ is the union of distinct equivalence classes. Let $E(s, n, j)$ be the set of those equivalence classes that contain j elements of $P(s, n)$. Define $p(s, n), i(s, n)$ and $e(s, n, j)$ to be the numbers of elements in $P(s, n), I(s, n)$ and $E(s, n, j)$, respectively. What are the generating functions of $i(s, n)$ and $e(s, n, j)$?

Note that the generating function for $p(s, n)$ is $\sum_{n=0}^{\infty} p(s, n) q^{n}=\frac{q^{s}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{s}\right)}$ (see [1, Chapter 6]).
(5) Describe partitions $\lambda \in P(s, n)$ that are self-equivalent, that is, if $\mu \in P(s, n)$ such that $\mu \sim \lambda$, then $\mu=\lambda$. For instance, $\lambda=(4,4,1)$ is self-equivalent with $\varepsilon_{(4,4,1)}(x)=$ $(x-3)^{2}$, but $\mu=(5,2,2)$ is not self-equivalent.
(6) For which partitions λ are $\varepsilon_{\lambda}(x)$ irreducible polynomials over \mathbb{Q} ?
(7) What are the necessary and sufficient conditions for $\lambda \sim \mu$ in $P(s, n)$ in terms of the conjugate partitions of λ and μ ?

Acknowledgment

The research work of both authors was partially supported by the National Natural Science Foundation of China (12031014). The author CCX thanks Professors Hourong Qin from Nanjing University for discussions on greatest common divisor matrices, and Yong Shao from Northwest University in Xi'an for conversations on semirings. Also, the authors are very grateful to the referee for very detailed comments, helpful suggestions and interesting questions which improve both the presentation and some results of the paper.

References

[1] G.E. Andrews, K. Eriksson, Integer Partitions, Cambridge University Press, Cambridge, 2004.
[2] S. Beslin, S. Ligh, Greatest common divisor matrices, Linear Algebra Appl. 118 (1989) 69-76.
[3] R.A. Brualdi, Introductory Combinatorics, Pearson Prentice Hall, Upper Saddle River, NJ, 2010.
[4] H. Cartan, S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, NJ, 1956.
[5] T. Cruz, R. Marczinzik, On properly stratified Gorenstein algebras, J. Pure Appl. Algebra 225 (12) (2021) 106757.
[6] L. Datta, S.D. Morgera, On the reducibility of centrosymmetric matrices-applications in engineering problems, Circuits Syst. Signal Process. 8 (1) (1989) 71-96.
[7] M. Fang, S. Koenig, Gendo-symmetric algebras, canonical comultiplication, bar cocomplex and dominant dimension, Trans. Am. Math. Soc. 368 (7) (2016) 5037-5055.
[8] K. Hirata, K. Sugano, On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Jpn. 18 (4) (1966) 360-373.
[9] W. Hu, C.C. Xi, Derived equivalences and stable equivalences of Morita type, II, Rev. Mat. Iberoam. 34 (2018) 59-110.
[10] O. Iyama, \varnothing. Solberg, Auslander-Gorenstein algebras and precluster tilting, Adv. Math. 326 (2018) 200-240.
[11] C.U. Jensen, H. Lenzing, Homological dimension and representation type of algebras under base field extension, Manuscr. Math. 39 (1) (1982) 1-13.
[12] L. Kadison, New Examples of Frobenius Extensions, University Lecture Series, vol. 14, Amer. Math. Soc., Providence, RI, 1999.
[13] Z.S. Li, The determinants of GCD matrices, Linear Algebra Appl. 134 (1990) 137-143.
[14] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics, vol. 818, Springer, Berlin, 1980.
[15] B.J. Muller, The classification of algebras by dominant dimension, Can. J. Math. 20 (1968) 398-409.
[16] D.I. Panyushev, Two results on centralisers of nilpotent elements, J. Pure Appl. Algebra 212 (2008) 774-779.
[17] A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003) 653-683.
[18] J.L. Stuart, Inflation matrices and ZME-matrices that commute with a permutation matrix, SIAM J. Matrix Anal. Appl. 9 (3) (1988) 408-418.
[19] J.L. Stuart, J.R. Weaver, Matrices that commute with a permutation matrix, Linear Algebra Appl. 150 (1991) 255-265.
[20] K. Sugano, Separable extensions and Frobenius extensions, Osaka J. Math. 7 (1970) 291-299.
[21] J.R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, Am. Math. Mon. 92 (10) (1985) 711-717.
[22] H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939.
[23] C.C. Xi, S.J. Yin, Cellularity of centrosymmetric matrix algebras and Frobenius extensions, Linear Algebra Appl. 590 (2020) 317-329.
[24] C.C. Xi, J.B. Zhang, Structure of centralizer matrix algebras, Linear Algebra Appl. 622 (2021) 215-249.

[^0]: * Corresponding author.

 E-mail addresses: xicc@cnu.edu.cn (C.C. Xi), zhangjb@cnu.edu.cn (J.B. Zhang).

