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Sn(c, R) is a Frobenius-finite, 1-Auslander-Gorenstein, and 
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isomorphism problem of invariant matrix algebras. Let σ
be a permutation in the symmetric group Σn and cσ
the corresponding permutation matrix in Mn(R). We give 
sufficient and necessary conditions for the invariant algebra 
Sn(cσ, R) to be semisimple. If R is an algebraically closed 
field, we establish a combinatoric characterization of when 
two semisimple invariant R-algebras are isomorphic in terms 
of the cycle types of permutations.
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1. Introduction

Let R be a unitary ring and n a natural number. We set [n] := {1, 2, · · · , n} and 
denote by Σn the symmetric group of permutations on [n], by Mn(R) the ring of n × n

matrices over R and by eij the matrix units of Mn(R) for i, j ∈ [n]. The identity matrix 
in Mn(R) is denoted by In.

For a nonempty set C of matrices in Mn(R), we define the centralizer algebra of C by

Sn(C,R) := {a ∈ Mn(R) | ac = ca for all c ∈ C}

In case C = {c}, we write Sn(c, R) for Sn({c}, R).
Given a subgroup G of Σn, we associate a set CG of all permutation matrices cσ

with σ ∈ G, and define the G-invariant matrix ring over R of degree n by Sn(G, R) :=
Sn(CG, R). We write Sn(σ, R) for Sn(cσ, R).

Invariant algebras and rings can be traced back to the classical invariant theory (see 
[22]). If C consists of nilpotent matrices and R is an algebraically closed field, then the 
variety consisting of nilpotent matrices in Sn(C, R) is of great interest in understanding 
properties of semisimple Lie algebras (see [16,17]). Note that Sn(σ, R) is a generaliza-
tion of centrosymmetric matrix algebras studied in [23]. As is known, centrosymmetric 
matrices have significant applications in Markov processes [21], engineering problems 
and quantum physics [6]. Centralizer algebras Sn(c, R) include the Auslander algebra 
of R[x]/(xn) (see [24]), which plays a crucial role in describing the orbits of parabolic 
subgroups acting on their unipotent radicals. Moreover, it is shown in [24] that if R
is an algebraically closed field then Sn(c, R) is a cellular algebra and the extension 
Sn(c, R) ⊆ Mn(R) is a Frobenius extension. But over an arbitrary field, these results 
are still to be understood. Recall that an extension S ⊆ R of rings is called a Frobenius 
extension if SR is a finitely generated projective S-module and RRS � HomS(SR, SS) as 
R-S-bimodules. Such extensions have intriguing interest in many aspects in mathematics 
(see [12]).

For σ ∈ Σn, we can write σ as a product of disjoint cycles, say σ = σ1σ2 · · ·σs, 
where σi is a λi-cycle with λi ≥ 1. Note that the product is unique up to re-ordering 
of these cycles. Thus we have a decomposition of n = λ1 + λ2 + · · · + λs. By assuming 
λ1 ≥ · · · ≥ λs ≥ 1, we get a partition λ = (λ1, · · · , λs) of n with s parts, which is called 
the cycle type of σ. This numeric data seems to play a central role in understanding the 
structure of Sn(σ, R).
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This note has two purposes. The first one is to reveal some nice homological properties 
of Sn(c, R) and to show that Sn(c, R) ⊆ Mn(R) is always a Frobenius extension for 
arbitrary field R and c ∈ Mn(R), including c being nilpotent. For the nilpotent case, 
one may see [5, Theorem 1.1(2)] for some recent results. The second one is to give a 
combinatoric characterization in terms of cycle types of when two semisimple invariant 
matrix algebras are isomorphic. Here, the general question reads as follows.

Let R be a field and σ, τ ∈ Σn. What are the necessary and sufficient conditions for 
Sn(σ, R) and Sn(τ, R) to be isomorphic in term of partitions?

Recall that the dominant dimension of an A-module AM is the supremum of n such 
that the first n terms in a minimal injective resolution of M are projective modules. An 
algebra A over a field is called Gorenstein if injdim(AA) < ∞ and injdim(AA) < ∞; and 
n-Auslander-Gorenstein if injdim(AA) ≤ n +1 ≤ domdim(AA) (see [10]). Here, for an A-
module M , we denote by injdim(AM) and domdim(AM) for the injective and dominant 
dimensions of AM , respectively. It is noted that an algebra A is n-Auslander-Gorenstein 
if and only if so is Aop (see [10, Proposition 4.1(b)]). Thus Auslander-Gorenstein algebras 
are always Gorenstein.

Following [9], we define the Frobenius part of a finite-dimensional algebra A over a 
field k to be the endomorphism algebra of the projective module Ae with e2 = e such that 
add(Ae) is just the category of those projective A-modules that remain projective under 
any positive power of the Nakayama functor Homk(A, k) ⊗A −. Clearly, the Frobenius 
part of A may not be basic, but unique up to Morita equivalence. The algebra A is said to 
be Frobenius-finite if its Frobenius part is representation-finite. Note that Frobenius parts 
of algebras play an important role in understanding both the Auslander-Reiten conjecture 
on stable equivalences and the lifting of stable equivalences to derived equivalences (see 
[9] for details). Recall that a finite-dimensional algebra A over a field k is symmetric
if A � Homk(A, k) as A-bimodules; and gendo-symmetric [7] if it is isomorphic to the 
endomorphism algebra of a generator for a finite-dimensional symmetric k-algebra.

Our first main result reads as follows.

Theorem 1.1. If R is a field and c ∈ Mn(R), then
(1) Sn(c, R) ⊆ Mn(R) is a separable Frobenius extension.
(2) Sn(c, R) is a Frobenius-finite, 1-Auslander-Gorenstein and gendo-symmetric alge-

bra. Moreover, the Frobenius part of Sn(c, R) is always a symmetric algebra.

To state our result on the isomorphism problem specifically, we introduce a few def-
initions. For a partition λ = (λ1, λ2, · · · , λs) of n with s parts, we define the so-called 
partition polynomial ελ(x) ∈ Z[x], which is the elementary symmetric polynomials gi(λ)
in λ1, · · · , λs, over the canonical bisemigroup of natural numbers

gi(λ) :=
∑

λk1 � λk2 � · · · � λki
,

1≤k1<k2<···<ki≤s



C.C. Xi, J.B. Zhang / Journal of Algebra 609 (2022) 688–717 691
where λi � λj means the greatest common divisor of λi and λj . The partition polynomial
of λ is defined as

ελ(x) := xs−1 − gs−1(λ)
gs(λ) xs−2 + · · · + (−1)s−2 g2(λ)

gs(λ)x + (−1)s−1 g1(λ)
gs(λ) ∈ Z[x],

The coefficients of ελ(x) can be calculated graphically (see Section 4.1 for details).

Theorem 1.2. Let R be a field of characteristic p ≥ 0, let σ ∈ Σn and τ ∈ Σm be of cycle 
types λ = (λ1, λ2, · · · , λs) and μ = (μ1, μ2, · · · , μt), respectively. Then the following hold.

(1) Sn(σ, R) is semisimple if and only if p � λi for all 1 ≤ i ≤ s.
(2) Assume that the field R is an algebraically closed such that Sn(σ, R) and Sm(τ, R)

are semisimple. Then Sn(σ, R) � Sm(τ, R) if and only if m = n and ελ(x) = εμ(x), where 
ελ(x) ∈ Z[x] is the partition polynomial of λ. In particular, Sn(σ, R) and Sm(τ, R) are 
Morita equivalent if and only if (−1)sdλ ελ(1) = (−1)tdμ εμ(1), where dλ denotes the 
greatest common divisor of λ1, λ2, · · · , λs.

Thus the isomorphism problem for semisimple, invariant matrix algebras over an 
algebraically closed field can be read off from the numerical values of the elementary 
symmetric polynomials evaluated at the corresponding partitions (see Section 4.1 for 
more details).

This article is outlined as follows. Section 2 is devoted to some basic facts on invari-
ant algebras of matrices, while Section 3 provides a proof of Theorem 1.1. Section 4
contributes to showing Theorem 1.2. During the course of the proof, we introduce a 
so-called polynomial equivalence relation and triangular divisor matrices of partitions 
based on elementary symmetric polynomials of partitions. Also, graphical calculations 
of the coefficients of partition polynomials are illustrated. At the end of this section, we 
formulate a few unsolved problems suggested by the main results.

2. Centralizer matrix algebras

In this section, we recall basic notions and establish primary facts on invariant matrix 
algebras. Throughout the paper, R denotes a unitary ring and Z(R) its center.

For a subgroup G of Σn, the permutation matrices cσ := e1,(1)σ +e2,(2)σ + · · ·+en,(n)σ
with σ ∈ G satisfy (cσ)ij = δ(i)σ,j for i, j ∈ [n], cσcτ = cστ , and c′σ = cσ−1 = c−1

σ , where 
a′ is the transpose of the matrix a and δij is the Kronecker symbol. Clearly, G acts on 
[n] and therefore on Mn(R) by

Mn(R) ×G −→ Mn(R), (aij) · g := (a(i)g,(j)g), (aij) ∈ Mn(R), g ∈ G.

The set of all G-fixed points of this action in Mn(R) is defined by

(Mn(R))G := {a ∈ Mn(R) | aij = a(i)σ,(j)σ, ∀ σ ∈ G, i, j ∈ [n]} =
⋂

Sn(σ,R).

σ∈G
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Lemma 2.1. (1) Sn(G, R) = (Mn(R))G. In particular, Z(R)[cσ] ⊆ Z(Sn(σ, R)), where 
Z(R)[cσ] consists of all polynomials in cσ with coefficients in Z(R).

(2) Sn(G, R) is a subring of the matrix ring Mn(R).
(3) The transpose of matrices is an anti-automorphism of order 2 of the ring Sn(G, R).
(4) If G is the subgroup of Σn generated by τ1, · · · , τr ∈ Σn, then Sn(G, R) =

∩r
i=1Sn(τi, R).

Proof. (1) This is already noticed in [18]. For the convenience of the reader, we sketch 
here a proof which will be used in the sequel. By definition, cσa = acσ if and only if 
(cσa)ij = (acσ)ij for all i, j ∈ [n]. But

1) (cσa)ij =
∑n

p=1(cσ)ipapj =
∑n

p=1 δ(i)σ,papj = a(i)σ,j ,

2) (acσ)ij =
∑n

p=1 aip(cσ)pj =
∑n

p=1 aipδ(p)σ,j = ai,(j)σ−1 ,

3) (cσacσ−1)ij = a(i)σ,(j)σ.

Thus cσa = acσ if and only if a(i)σ,j = ai,(j)σ−1 for all i, j if and only if aij = a(i)σ,(j)σ
for all i, j ∈ [n].

The other statements are clear from definition. �
By Lemma 2.1(1), Sn(σ, R) = Sn(〈σ〉, R), where 〈σ〉 is the subgroup of Σn generated 

by σ. The next lemma shows that Sn(σ, R) depends only upon the cycle type λ of σ. So 
we may also write Sn(λ, R) for Sn(σ, R). The proof is similar to the one of [24, Lemma 
2.1], we leave it to the reader.

Lemma 2.2. Let σ, τ ∈ Σn, and let d ∈ Mn(R) be an invertible matrix. Then
(1) Sn(σ−1, R) = Sn(σ, R). In particular, Sn(cσ, R) = Sn(c′σ, R).
(2) Sn(dcσd−1, R) � Sn(σ, R) as rings.
(3) Sn(στ, R) � Sn(τσ, R) as rings.

Let σ ∈ Σn be of the cycle type (λ1, · · · , λs), G = 〈σ〉, and Λ := {(i, j) | 1 ≤ i, j ≤ n}. 
Then G acts on Λ by (i, j) ·σ =

(
(i)σ, (j)σ

)
. Let O(i,j) denote the G-orbit of (i, j). Then, 

according to 3), a matrix a ∈ Sn(σ, R) if and only if a takes a constant value on each 
orbit O(i,j). Here, we regard a ∈ Mn(R) as a function from Λ to R. Now we describe the 
number of G-orbits in Λ.

We assume n ≥ 2 and consider the three cases.
(i) σ = (12 · · ·n). In this case, G has order n and acts on Λ by (i, j)σ = (i + 1, j + 1). 

Thus the stabilizer subgroup of G fixing (i, j) ∈ Λ is trivial and the G-orbit of (i, j) has 
|G| elements. Hence there are n G-orbits of Λ, they are O(1,j), 1 ≤ j ≤ n.

(ii) σ = (12 · · · p)(p + 1, · · · , p + q) with n = p + q. In this case, |G| = [p, q], the least 
common multiple of p and q. Let X := {(i, j) | 1 ≤ i ≤ p, p +1 ≤ j ≤ n} with the G-action 
given by (i, j)σ = (i +1, j+1). Let σ1 = (12 · · · p) ∈ Σp and σ2 = (p +1, · · · , p +q) ∈ Σq, 
here we consider Σq as the symmetric group of permutations on {p +1, p +2, · · · , p + q}. 
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If ((i)σl, (j)σl) = (i, j) for a natural number 1 ≤ l ≤ [p, q], then ((i)σl
1, (j)σl

2) = (i, j). 
This implies that p|l and q|l. Thus [p, q]|l and l = [p, q]. Hence the stabilizer subgroup of 
G fixing (i, j) is trivial and the G-orbit of (i, j) has [p, q] elements. Therefore the number 
of G-orbits of X is pq/[p, q].

(iii) σ = σ1σ2 · · ·σs, a product of disjoint cycles with s a natural number, where σi is 
a cycle of length λi ≥ 1 with the content Xi, the set of all numbers appearing in σi. Thus 
|G| = [λ1, λ2, · · · , λs] and Xi is a G-orbit for 1 ≤ i ≤ s, where [λ1, λ2, · · · , λs] denotes 
the least common multiple of λ1, λ2, · · · , λs. Therefore Xi ∩Xj = ∅ for 1 ≤ i �= j ≤ s, 
and ∪s

j=1Xj = {1, 2, · · · , n}. The set Λ can be identified with the disjoint union

⋃̇
1≤i,j≤s

Xi ×Xj .

For (x, y) ∈ Xi ×Xj , the G-orbit O(x,y) of (x, y) depends only upon σi and σj . Thus, if 
i = j, then we are in case (i) and the number of G-orbits is λi. If i �= j, then we are in 
the case (ii) and the number of G-orbits of Xi ×Xj is λiλj/[λi, λj ]. Thus the number of 
G-orbits of Λ is

�n(σ) :=
∑

1≤i,j≤s

λiλj

[λi, λj ]
=

∑
1≤i,j≤s

λi � λj ,

where λi � λj stands for gcd(λi, λj), the greatest common divisor of λi and λj .
We define C(λ) := (λi � λj)s×s ∈ Ms(N). This symmetric matrix is called the greatest 

common divisor matrix of λ in the literature (see [2,13]). In this note, it will be called 
the dimension matrix of Sn(σ, R). Further, let

fi :=
∑
j∈Xi

ejj , 1 ≤ i ≤ s, fij :=
∑

(p,q)∈O(i,j)

ep,q, (i, j) ∈ Λ.

Then f1, · · · , fs are pairwise orthogonal idempotent elements in Sn(σ, R) and 
∑s

j=1 fj =
In in Mn(R). This yields the matrix decomposition of Sn(σ, R)

Sn(σ,R) =

⎛
⎜⎜⎝
f1Sn(σ,R)f1 f1Sn(σ,R)f2 · · · f1Sn(σ,R)fs
f2Sn(σ,R)f1 f2Sn(σ,R)f2 · · · f2Sn(σ,R)fs

...
...

. . .
...

fsSn(σ,R)f1 fsSn(σ,R)f2 · · · fsSn(σ,R)fs

⎞
⎟⎟⎠ .

The transpose of matrices is an R-involution on Sn(σ, R) fixing fi for all 1 ≤ i ≤ s.

Lemma 2.3. (1) Sn(σ, R) is a free R-module of rank �n(σ).
(2) The R-rank of fiSn(σ, R)fj is λi � λj.
(3) The dimension matrix C(λ) of Sn(σ, R) is positive definite if the numbers λi, 

1 ≤ i ≤ s, are pairwise distinct. In this case, the determinant detC(λ) of C(λ) satisfies 
ϕ(λ1) · · ·ϕ(λs) ≤ detC(λ) ≤

∏s
i=1 λi − s!

2 , where ϕ(λi) is the Euler’s totient function of 
λi.
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Proof. (1) and (2) are consequences of the definition of Sn(σ, R) and the calculation of 
G-orbits of Λ (see also [19]). (3) is proved in [2, Theorem 2] and [13, Theorem 1 and 
Theorem 3]. �
Example 2.4. (1) Sn((12 · · ·n), R) � R[Cn], where R[Cn] is the group algebra of the cyclic 
group Cn of order n over R. Note that c(12···n) =

∑n
j=1 ej,j+1 has order n and cn(12···n) = f1

is the identity matrix. Here we understand (n, n +1) = (n, 1). The transpose of matrices 
in Sn((12 · · ·n), R) corresponds to the involution defined by c(12···n) �→ c−1

(12···n).
(2) If λ = (λ1, · · · , λ1) = (λs

1) where λ1 appears s times, then Ssλ1(λ, R) �
Ms(R[Cλ1 ]). In fact, each element of Ssλ1(λ, R) can be partitioned as an s × s block-
matrix such that each block has entries in fiSsλ1(λ, R)fj � R[Cλ1 ]. Thus Ssλ1(λ, R) �
Ms(R[Cλ1 ]).

By Lemma 2.2(2), up to isomorphism of rings, we may assume

σ = (12 · · ·λ1)(λ1 + 1, · · · , λ1 + λ2) · · · (λ1 + · · · + λs−1 + 1, · · · , λ1 + · · · + λs)

as a product of disjoint cycles. Let λ = (λ1, · · · , λs), X1 = {1, · · · , λ1}, Xi = {j |∑i−1
�=1 λ� < j ≤

∑i
�=1 λi} for 2 ≤ i ≤ s, dij := λi � λj . Then

cσ =

⎛
⎜⎜⎝
Pλ1 0 · · · 0
0 Pλ2 · · · 0
...

...
. . .

...
0 0 · · · Pλs

⎞
⎟⎟⎠

n×n

where Pm :=

⎛
⎜⎜⎝

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 0 · · · 0

⎞
⎟⎟⎠

m×m

For r0, · · · , rm−1 ∈ R, we denote by C(r0, · · · , rm−1) (or Cm(r0, · · · , rm−1)) the cir-
culant matrix⎛

⎜⎜⎜⎜⎜⎝

r0 r1 r2 · · · rm−1
rm−1 r0 r1 · · · rm−2

...
. . . . . . . . .

...

r2 · · · . . . . . . r1
r1 r2 · · · rm−1 r0

⎞
⎟⎟⎟⎟⎟⎠

m×m

= r0Im + r1Pm + · · · + rm−1P
m−1
m .

Thus, for a cyclic group Cm of order m, we have

R[Cm] � Sm((12 · · ·m), R) = {C(r0, · · · , rm−1) | r0, · · · , rm−1 ∈ R}.

Recall that, given σ ∈ Σn and τ ∈ Σm, an n × m matrix a = (aij) ∈ Mn×m(R) is 
called a (σ, τ)-invariant matrix if cσa = acτ .

We see easily that an s × s block matrix a = (Aij) with Aij ∈ Mλi×λj
(R) lies in 

Sn(σ, R) if and only if Aij is a (σi, σj)-invariant matrix for each pair 1 ≤ i, j ≤ s. Thus 
a matrix a ∈ Sn(σ, R) can be written as a block-matrix form
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a = (Aij) =

⎛
⎜⎜⎝
A11 A12 · · · A1s
A21 A22 · · · A2s
...

...
. . .

...
As1 As2 · · · Ass

⎞
⎟⎟⎠

s×s

where the diagonal Aii is a λi × λi circulant matrix and the off-diagonal Aij is a λi × λj

matrix over R, having the block form:

Aij =

⎛
⎜⎝C(r1, · · · , rdij

) · · · C(r1, · · · , rdij
)

... · · ·
...

C(r1, · · · , rdij
) · · · C(r1, · · · , rdij

)

⎞
⎟⎠

λi
dij

× λj
dij

for r1, · · · , rdij
∈ R (see [19, p. 260] for R = C). In general, we have an isomorphism of 

R-modules

fiSn(σ,R)fj � {Aij ∈ Mλi×λj
(R) | r1, · · · , rdij

∈ R}.

Lemma 2.5. (1) For 1 ≤ i ≤ s, fiSn(σ, R)fi � R[Cλi
] as rings.

(2) If λ1 = λ2, then Sn(σ, R)f1 � Sn(σ, R)f2 as left Sn(σ, R)-modules.
(3) If m := n − λi and f := f1 + · · · + fi−1 + fi+1 + · · · + fs, then fSn(σ, R)f �

Sm(σ1 · · ·σi−1σi+1 · · ·σs, R) as rings.

Proof. (1) If λi = 1, then fiSn(σ, R)fi � R and (1) holds. We assume λi ≥ 2 and define 
mi−1 :=

∑i−1
j=1 λj , g := emi−1+1,mi−1+2 + · · · + emi−1+λi−1,mi−1+λi

+ emi−1+λi,mi−1+1. 
Then gλi = fi and gj �= fi for all 1 ≤ j < λi. One can check that {fi, g, g2, · · · , gλi−1}
is an R-basis of fiSn(σ, R)fi. Thus fiSn(σ, R)fi � R[Cλi

].
(2) By definition, f1 = e11+· · ·+eλ1,λ1 and f2 = eλ1+1,λ1+1+eλ1+2,λ1+2+· · ·+e2λ1,2λ1 . 

Let a0 := e1,λ1+1 + e2,λ1+2 + · · · + eλ1,2λ1 . Then a0 ∈ Sn(σ, R) and f1a0 = a0f2 = a0. 
So, we define a map

ψ : Sn(σ,R)f1 −→ Sn(σ,R)f2, af1 �→ af1a0 for a ∈ Sn(σ,R).

Note that ψ just moves the first λ1 columns of af1 entirely to the second λ1 columns of 
af1a0, and sends other columns of af1 to zero. Thus ψ is a homomorphism of Sn(σ, R)-
modules, and it is in fact an isomorphism of Sn(σ, R)-modules.

(3) We may assume i = 2 since the argument below works for any i. If we delete 
the cycle σ2 from σ and consider τ := σ1σ3 · · ·σs as a permutation on Y := [n] \X2 =
X1 ∪ (X3 ∪ · · · ∪Xs), then Sm(σ1σ3 · · ·σs, R) is well defined. Observe that σ and τ have 
the same action on Y and that a matrix a in fSn(σ, R)f is of the form

(
A 0 U
0 0 0
V 0 B

)

n×n
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where A is a matrix indexed by X1 ×X1, U is a matrix indexed by X1 × (X3 ∪ · · · ∪Xs), 
V is a matrix indexed by (X3 ∪ · · · ∪Xs) ×X1 and B is a matrix indexed by (X3 ∪ · · · ∪
Xs) × (X3 ∪ · · · ∪Xs). Since a ∈ fSn(σ, R)f , the block matrix

b :=
(
A U
V B

)

is in Sm(τ, R). Conversely, given a matrix b ∈ Sm(τ, R), we partition b into a block form 
according to Y , say the above form. Then we get an n ×n matrix by putting 0-blocks in 
the middle row and column, and this matrix is in fSn(σ, R)f . Note that the identity in 

fSn(σ, R)f is f =
(1 0 0

0 0 0
0 0 1

)
. In this way, we get a one-to-one correspondence which 

preserves identity, addition and multiplication of matrices. This shows fSn(σ, R)f �
Sm(τ, R). �
3. Proof of Theorem 1.1

This section is devoted to a proof of the statements of Theorem 1.1. We start with 
the following proposition.

Proposition 3.1. Let k ⊆ K be an extension of fields with dimk(K) < ∞, and let B ⊆ A

be an extension of finite-dimensional algebras over k. Then B ⊗k K ⊆ A ⊗k K is a 
Frobenius extension if and only if B ⊆ A is a Frobenius extension.

To prove Proposition 3.1, we begin with a few lemmas.

Lemma 3.2. (1) Let k ⊆ K be an extension of fields. Then it is a Frobenius extension if 
and only if dimk(K) is finite.

(2) Let A be an algebra over a field, and let M and N be finite-dimensional A-modules. 
Then the following are equivalent for M and N :

(i) M � N .
(ii) There is an integer n ≥ 1 such that Mn � Nn.

Proof. (1) is trivial. (2) is not difficult, but for the convenience of the reader, we include 
here a proof. We show that (ii) implies (i). Suppose M �

⊕s
i=1 X

si
i and N �

⊕t
j=1 Y

tj
i , 

where Xi and Yj are indecomposable modules with Xi �� Xp, Yj �� Yq for 1 ≤ i �= p ≤ s

and 1 ≤ j �= q ≤ t, si ≥ 1 and tj ≥ 1. It follows from Mn � Nn that s = t and, up to a 
permutation of these Yj , that Xi � Yi and si = ti for all i. Thus M � N . �

For k-algebras A and B, we may form the tensor product A ⊗k B of algebras over 
k. Given an A-module AX and a B-module BY , the tensor product X ⊗k Y has a left 
(A ⊗k B)-module structure in a natural way, and the Hom-set Homk(X, Y ) is a B-A-
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bimodule defined by bf : x �→ b(xf), fa : x �→ (ax)f for x ∈ X, a ∈ A, b ∈ B and 
f ∈ Homk(X, Y ).

The first statement (1) of the next lemma is known in [20, Lemma 4] and [8, Corollary 
2.8], while the second statement (2) is in [4, Chap. XI, Theorem 3.1, pp. 209-210]. In 
fact, (1) can be proved by applying (2).

Lemma 3.3. (1) Let B ⊆ A be an extension of algebras over a field k and C be an 
algebra over k. If B ⊆ A is a Frobenius (or separable) extension, then the extension 
B ⊗k C ⊆ A ⊗k C of tensor products of algebras is a Frobenius (or separable) extension.

(2) Let A, B, C, D, E, F be algebras over a field k, and let AX, AY be A-modules 
and BX ′, BY ′ be B-modules. Then HomA⊗kB(X ⊗k X ′, Y ⊗k Y ′) � HomA(X, X ′) ⊗k

HomB(Y, Y ′) as k-spaces. Moreover, if AXC , AYE, BX ′
D and BY ′

F are bimodules, then 
the foregoing isomorphism is a (C ⊗k D)-(E ⊗k F )-bimodule homomorphism.

Lemma 3.4. If k ⊆ K is an extension of fields and c ∈ Mn(k), then Sn(c, K) � Sn(c, k) ⊗k

K as K-algebras.

Proof. Observe that aλ = λa ∈ Sn(c, K) for a ∈ Sn(c, k) and λ ∈ K. If we choose a 
basis of the k-space K, say {vi | i ∈ I}, where I is an index set (not necessarily finite), 
then any matrix a = (aij) ∈ Mn(K) can be expressed uniquely as a =

∑
p∈J a(p)vp, with 

J a subset of I and a(p) ∈ Mn(k) for p ∈ J . This is due to the fact that {viIn | i ∈ I}
is a basis of the left Mn(k)-module Mn(K), where In is the identity matrix. Hence a 
matrix a = (aij) ∈ Mn(K) belongs to Sn(c, K) if and only if a(i) ∈ Sn(c, k) for all i ∈ J . 
This yields that the restriction of the multiplication map μ : Mn(k) ⊗k K → Mn(K) to 
Sn(c, k) ⊗k K gives rise to a surjective homomorphism μ′ : Sn(c, k) ⊗k K → Sn(c, K) of 
K-algebras. Thus Lemma 3.4 follows from the commutative diagram

Sn(c, k) ⊗k K
μ′

Sn(c,K)

Mn(k) ⊗k K ∼
μ

Mn(K)

with μ clearly an isomorphism of K-algebras. �
Proof of Proposition 3.1. It follows from Lemma 3.3(1) that B ⊗k K ⊆ A ⊗k K is a 
Frobenius extension if B ⊆ A is a Frobenius extension. Conversely, we postulate that 
B ⊗k K ⊆ A ⊗k K is a Frobenius extension. Then B⊗kK(A ⊗k K) is a finitely generated 
projective B ⊗k K-module and

HomB⊗kK(A⊗k K,B ⊗k K) � A⊗kK(A⊗k K)B⊗kK .

First, we show that BA is finitely generated. Suppose that {λi | i ∈ I} is a k-basis of 
k-space K with λ0 = 1. Then every element a in A ⊗k K can be uniquely expressed 
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as 
∑

i∈Ia
ai ⊗ λi with ai ∈ A, where Ia is a subset of I. Let x1, · · · , xm ∈ A ⊗k K be 

generators of A ⊗k K over B⊗k K and xi =
∑

j∈Ii
aij ⊗k λj with aij ∈ A, where Ii is an 

index set. Pick an element a ∈ A and consider a ⊗1. We write a ⊗1 =
∑m

j=1 yjxj , where 
yj =

∑
p∈Jj

bp ⊗ λp ∈ B ⊗k K, and λpλj =
∑

q∈Ipj
μpjqλq, where μpjq ∈ k and Ipj is a 

finite subset of I. Then a ⊗1 is a finite summation of elements of the form μpjqbpaij⊗λq for 
q ∈ Ipj . By the unique expression of elements in A ⊗k K, we see that a can be generated 
over B by all aij with 1 ≤ i ≤ m and j ∈ ∪m

t=1It. Thus BA is finitely generated. Since 
A ⊗k K is projective over B⊗k K and B ⊗k K is projective over B, we see that A ⊗k K

is projective over B. This implies that BA is projective over B. Now it follows from 
Lemma 3.3(2) that HomB⊗kK(BAA ⊗k K, BBB ⊗k K) � HomB(BA, BB) ⊗k K. Thus 
we have an isomorphism AAB ⊗k K � AHomB(BAA, BB)B ⊗k K as (A ⊗k K)-(B ⊗k

K)-bimodules. Just considering the A-B-bimodule structure of this isomorphism, we 
get (AAB)dimk(K) � HomB(BAA, BB)dimk(K) as A-B-bimodules. By Lemma 3.2(2), we 
must have AAB � HomB(AA, BB) as A-B-bimodules. Thus B ⊆ A is a Frobenius 
extension. �
Proof of Theorem 1.1(1). Suppose that R is any field and c ∈ Mn(R). Let R̄ be an 
algebraic closure of R. So all eigenvalues of c lie in R̄. We consider the smallest subfield 
K of R̄ containing R and all eigenvalues of c, that is, K is obtained from R by adding 
all eigenvalues of c. Thus K is a finite extension of R, that is, dimR(K) < ∞. We may 
assume that K is a splitting field of the characteristic polynomial of c. Thus c is similar 
to a Jordan-block matrix by a matrix in GLn(K). It follows from [24, Theorem 1.2(2)]
that Sn(c, K) ⊆ Mn(K) is a separable Frobenius extension. By Proposition 3.1 and 
Lemma 3.4, we deduce that Sn(c, R) ⊆ Mn(R) is a separable Frobenius extension. �

Now we turn to the proof of Theorem 1.1(2). Assume that c is a Jordan-block matrix 
with the same eigenvalues. More precisely, suppose

c = diag(Jb1
1 , Jb2

2 , . . . , Jbs
s ) ∈ Mn(R),

where Ji, the Jordan block of size λi with the eigenvalue r ∈ R, appears bi times for 
1 ≤ i ≤ s and λ1 > λ2 > · · · > λs.

As in [24, Section 2], we define

m0 := 0, mi :=
i∑

p=1
bp, nij := jλi +

i−1∑
p=1

bpλp, 1 ≤ i ≤ s, 1 ≤ j ≤ bi.

Then ms is the number of Jordan blocks of c. For each i ∈ [ms], let g(i) be the 
smallest g(i) ∈ [s] such that i ≤ mg(i), and let h(i) := i − mg(i)−1 ∈ [bg(i)] and 
θij := min{λg(i), λg(j)} for j ∈ [ms].
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For each i ∈ [ms], we define

fi :=
ng(i)h(i)∑

p=ng(i)h(i)−λg(i)+1

epp,

that is, fi is the identity matrix corresponding to the i-th block in the identity matrix In. 
Then {f1, f2, · · · , fms

} is a complete set of orthogonal primitive idempotents of Sn(c, R)
by [24, Lemma 2.6(4)].

Let Λ := Sn(c, R), Λij := fiSn(c, R)fj and Λ̃ij := {a ∈ Mλg(i)×λg(j)(R) | Jg(i)a =
aJg(j)}. Given 1 ≤ i, j ≤ ms and 1 ≤ p ≤ θij , we define

F p
ij :=

p∑
v=1

eng(i)h(i)−λg(i)+p−v+1,ng(j)h(j)−v+1.

Then {F p
ij | 1 ≤ p ≤ θij} is an R-basis of fiSn(c, R)fj and {F p

ij | 1 ≤ i, j ≤ ms, 1 ≤ p ≤
θij} is an R-basis of Sn(c, R) by [24, Lemma 2.6(2)-(3)]. Moreover, we have the following 
property.

Lemma 3.5. ([24, Lemma 2.5]) If 1 ≤ i, j, k, l ≤ ms, 1 ≤ p ≤ θik and 1 ≤ q ≤ θkj, then

F p
ikF

q
lj =

{
0 if k �= l or p + q − λg(k) < 1,
F

p+q−λg(k)
ij if k = l and p + q − λg(k) ≥ 1.

Given 1 ≤ u ≤ ms, we have fu = F
λg(u)
uu ∈ Λfu. By Lemma 3.5, fuF

λg(u)
u1 = F

λg(u)
u1 =

F
λg(u)
u1 f1 ∈ fuΛf1. So we can define a map

αu : Λfu −→ Λf1, afu �→ afuF
λg(u)
u1 for a ∈ Λ.

Note that {F p
iu | 1 ≤ i ≤ ms, 1 ≤ p ≤ θiu} is an R-basis of Λfu and F p

iuF
λg(u)
u1 = F p

i1 for 
1 ≤ i ≤ ms, 1 ≤ p ≤ θiu by Lemma 3.5. Then {F p

i1 | 1 ≤ i ≤ ms, 1 ≤ p ≤ θiu} is an 
R-basis of the image of αu. Let Mu be the image of αu. Obviously, Λfu and Mu have the 
same dimensions as R-spaces. Thus αu : Λfu → Mu is an isomorphism of Λ-modules. 
If 1 ≤ u ≤ b1, then θiu = θi1 and Mu = Λfu. In this case, αu : Λfu → Λf1 is an 
isomorphism of Λ-modules.

Similarly, it follows from f1F
λg(u)
1u = F

λg(u)
1u = F

λg(u)
1u fu that we may define a map

βu : fuΛ −→ f1Λ, fua �→ F
λg(u)
1u fua for a ∈ Λ.

Let Nu be the image of βu. Then {F p
1i | 1 ≤ i ≤ ms, 1 ≤ p ≤ θui} is an R-basis of Nu, 

and βu : fuΛ → Nu is an isomorphism of right Λ-modules. In particular, if 1 ≤ u ≤ b1
then θui = θ1i, Nu = fuΛ and βu is an isomorphism of right Λ-modules.
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In order to calculate the injective dimension of Λ, we need the following lemma. For 
convenience, let λs+1 = 0, g(ms + 1) = s + 1, Mms+1 = 0 and Nms+1 = 0. We denote 
by D = HomR(−, R) the usual duality.

Lemma 3.6. Λf1/Mu � D(f1Λ/Nu) as Λ-modules for 1 ≤ u ≤ ms +1. In particular, Λf1
is projective-injective.

Proof. For 1 ≤ u ≤ b1, Mu = Λf1 and Nu = f1Λ, and therefore Λf1/Mu = D(f1Λ/Nu) =
0. Now suppose b1 + 1 ≤ u ≤ ms + 1.

We utilize the technique: If AX and YA are finite-dimensional modules with a non-
degenerate R-bilinear form 〈−, −〉 : X × Y → R which is associative: 〈ax, y〉 = 〈x, ya〉
for all x ∈ X, y ∈ Y , a ∈ A, then X � D(Y ) as A-modules.

For simplicity, let f := f1 and

ρ : fΛf −→ R[x]/(xλ1),
λ1∑
i=1

riF
i
11 �→

λ1∑
i=1

rix̄
λ1−i for ri ∈ R,

be the canonical isomorphism of algebras. We define two R-linear maps π and ε as 
follows.

π : R[x]/(xλ1) −→ R[x]/(xλ1−λg(u)),
λ1−1∑
i=0

rix̄
i �→

λ1−λg(u)−1∑
i=0

rix̄
i for ri ∈ R,

ε : R[x]/(xλ1−λg(u)) −→ R,

λ1−λg(u)−1∑
i=0

rix̄
i �→

λ1−λg(u)−1∑
i=0

ri for ri ∈ R,

where x̄ denotes the coset of x in the quotient rings. Note that (
∑λ1

i=1 riF
i
11)ρ =∑λ1

i=1 rix̄
λ1−i =

∑λ1−1
j=0 rλ1−j x̄

j . Then η := ρπε : fΛf → R, 
∑λ1

i=1 riF
i
11 �→∑λ1−λg(u)−1

i=0 rλ1−i, is an R-linear map. Further, we define

〈−,−〉 : Λf/Mu × fΛ/Nu −→ R, 〈bf + Mu, fa + Nu〉 := (fabf)η for a, b ∈ Λ.

We point out that 〈−, −〉 is independent of the choice of representatives of cosets in 
Λf/Mu and fΛ/Nu. Indeed, given bf ∈ Mu, we have abf ∈ Mu for a ∈ Λ since Mu

is a Λ-module. Note that {F p
11 | 1 ≤ p ≤ λg(u)} is an R-basis of fMu and (F p

11)η =
(x̄λ1−p)πε = (0)ε = 0 for 1 ≤ p ≤ λg(u). Thus 〈bf + Mu, fa + Nu〉 = (fabf)η = 0 for 
a ∈ Λ. Similarly, for fa ∈ Nu, we have 〈bf + Mu, fa + Nu〉 = (fabf)η = 0 for b ∈ Λ. 
Thus 〈−, −〉 is well defined.

Clearly, 〈−, −〉 is an R-bilinear form and for c ∈ Λ,

〈cbf + Mu, fa + Nu〉 = (facbf)η = 〈bf + Mu, fac + Nu〉.

Moreover, 〈−, −〉 is non-degenerate.
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In fact, suppose bf ∈ Λf such that 〈bf + Mu, fa + Nu〉 = 0 for all a ∈ Λ. Then 
(fΛbf)η = 0. Since (fΛbf)ρπ is a left ideal in R[x]/(xλ1−λg(u)) and Ker(ε) does not 
contain any nonzero left ideal of R[x]/(xλ1−λg(u)), we get (fΛbf)ρπ = 0. In the following, 
we prove bf ∈ Mu.

Since {F p
i1 | 1 ≤ i ≤ ms, 1 ≤ p ≤ λg(i)} is an R-basis of Λf , we write bf =∑ms

i=1
∑λg(i)

p=1 ripF
p
i1 ∈ Λf with rip ∈ R. For 1 ≤ j ≤ u − 1, we have F

λg(j)
1j ∈ fΛ and 

F
λg(j)
1j bf =

∑ms

i=1
∑λg(i)

p=1 ripF
λg(j)
1j F p

i1 =
∑λg(j)

p=1 rjpF
p
11 ∈ fΛbf by Lemma 3.5. It follows 

from (fΛbf)ρπ = 0 that

(Fλg(j)
1j bf)ρπ = (

λg(j)∑
p=1

rjpF
p
11)ρπ = (

λg(j)∑
p=1

rjpx̄
λ1−p)π = (

λ1−1∑
q=λ1−λg(j)

rj,λ1−qx̄
q)π

=
λ1−λg(u)−1∑
q=λ1−λg(j)

rj,λ1−qx̄
q = 0

in R[x]/(xλ1−λg(u)). Thus rj,λ1−q = 0 for λ1 −λg(j) ≤ q ≤ λ1 −λg(u) − 1, that is, rjp = 0
for λg(u) +1 ≤ p ≤ λg(j). Then bf =

∑u−1
i=1

∑λg(u)
p=1 ripF

p
i1 +

∑ms

i=u

∑λg(i)
p=1 ripF

p
i1. Note that

{F p
i1 | 1 ≤ i ≤ ms, 1 ≤ p ≤ θiu}

= {F p
i1 | 1 ≤ i ≤ u− 1, 1 ≤ p ≤ λg(u)} ∪ {F p

i1 | u ≤ i ≤ ms, 1 ≤ p ≤ λg(i)}

is an R-basis of Mu. Then bf ∈ Mu.
Similarly, if fa ∈ fΛ such that 〈bf + Mu, fa + Nu〉 = 0 for all b ∈ Λ, then fa ∈ Nu. 

Thus 〈−, −〉 is a non-degenerate R-bilinear form.
Now, we define another R-linear map

ψu : Λf/Mu −→ D(fΛ/Nu), bf + Mu �→ (fa + Nu �→ 〈bf + Mu, fa + Nu〉) for a, b ∈ Λ.

Then (fa + Nu)(c(bf + Mu))ψu = 〈c(bf + Mu), fa + Nu〉 = 〈bf + Mu, (fa + Nu)c〉 = 
((fa +Nu)c)(bf +Mu)ψu = (fa +Nu)(c(bf +Mu)ψu) for a, b, c ∈ Λ. This means that ψu

is a homomorphism of Λ-modules. By definition, θiu = θui for 1 ≤ i, j ≤ ms. It follows 
from [24, Lemma 2.6(2)] that

dimR(Λfi) =
∑

1≤j≤ms

dimR(fjΛfi) =
∑

1≤j≤ms

θij =
∑

1≤j≤ms

θji

=
∑

1≤j≤ms

dimR(fiΛfj) = dimR(fiΛ)

for 1 ≤ i ≤ ms. Thus dimR(Λfi) = dimR(fiΛ) for 1 ≤ i ≤ ms. Due to dimR(Mu) =
dimR(Λfu) and dimR(Nu) = dimR(fuΛ), we then get dimR(Mu) = dimR(Nu) and 
dimR(Λf/Mu) = dimR(fΛ/Nu). Since ψu is injective by the non-degenerative form, it 
is an isomorphism of Λ-modules. �
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Lemma 3.7. Λ is 1-Auslander-Gorenstein. In particular, Λ is Gorenstein.

Proof. Suppose s = 1. Then Λ � Mb1(R[x]/(xλ1)) by [24, Lemma 2.6(1)]. Thus Λ
is self-injective and injdim(ΛΛ) = 0 < 2 < ∞ = domdim(Λ). Hence Λ is 1-minimal 
Auslander-Gorenstein.

Suppose s ≥ 2. By Lemma 3.6, Λf1 � D(f1Λ) is a projective-injective module. For 
1 ≤ u ≤ b1, we have Λfu � Λf1 and fuΛ � f1Λ. Then Λfu is projective and injective for 
1 ≤ u ≤ b1. For b1 + 1 ≤ u ≤ ms, there are two exact sequences of Λ-modules:

0 −→ Λfu
αu−→ Λf1

α′
u−→ Λf1/Mu −→ 0,

(∗) 0 −→ fuΛ βu−→ f1Λ
β′
u−→ f1Λ/Nu −→ 0.

By applying D = HomR(−, R) to the exact sequence (∗), we get the exact sequence of 
Λ-modules:

0 −→ D(f1Λ/Nu) D(β′
u)−→ D(f1Λ) D(βu)−→ D(fuΛ) −→ 0.

By Lemma 3.6, we have ψu : Λf1/Mu
∼−→ D(f1Λ/Nu) as Λ-modules. This gives rise to 

an exact sequence

(�) 0 −→ Λfu
αu−→ Λf1

α′
uψuD(β′

u)−→ D(f1Λ) D(βu)−→ D(fuΛ) −→ 0

of Λ-modules. Again by Lemma 3.6, Λf1 � D(f1Λ) is projective-injective. Since Λf1
is indecomposable, αu and D(β′

u) are injective envelopes of Λfu and D(f1Λ/Nu), re-
spectively. Therefore the sequence (�) is a minimal injective resolution of ΛΛfu. Thus 
injdim(ΛΛfu) = 2 for b1 + 1 ≤ u ≤ ms and injdim(ΛΛ) = 2.

For b1 +1 ≤ u ≤ ms, Λfu is not an injective Λ-module. Otherwise, it follows from the 
monomorphism αu that Λfu is a direct summand of Λf1, and this would mean Λfu �
Λf1, a contradiction to λ1 > λ2 > · · · > λs. Thus Λf1, up to isomorphism of Λ-modules, 
is the unique indecomposable, projective-injective Λ-module. By (�), domdim(Λfu) = 2
for b1 + 1 ≤ u ≤ ms and domdim(Λ) = 2.

Thus injdim(ΛΛ) = 2 = domdim(Λ) and Λ is 1-Auslander-Gorenstein. �
Since an indecomposable projective module which is stable under the Nakayama func-

tor must be projective-injective, the proof of Lemma 3.7 shows that Λf1 is the only (up 
to isomorphism) indecomposable projective-injective Λ-module stable under arbitrary 
positive power of the Nakayama functor DHomΛ(−, Λ). Thus Λ has the Frobenius part 
f1Λf1 which is isomorphic to R[x]/(xλ1).

Lemma 3.8. Let A be a finite-dimensional k-algebra over a field k, and let k ⊆ K be an 
extension of fields.

(1) If A is a symmetric k-algebra, then A ⊗k K is a symmetric K-algebra.
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(2) Suppose that the extension k ⊆ K is finite. If A ⊗k K is a symmetric K-algebra, 
then A is a symmetric k-algebra.

Proof. Let Dk := Homk(−, k) for a field k. Then we have the isomorphisms of A ⊗k K-
bimodules.

(�) DK(A⊗k K) = HomK(A⊗k K,K)

� Homk(A,HomK(K,K)) (by the adjunction isomorphism)

� Homk(A,K) � Homk(A, k ⊗k K)

� Homk(A, k) ⊗k K (A is a finite-dimensional k-space)

= Dk(A) ⊗k K.

(1) Suppose that A is a symmetric k-algebra. Then there exists an isomorphism η :
AAA → ADk(A)A of A-bimodules. Then the induced homomorphism η ⊗ 1 : A ⊗k K →
Dk(A) ⊗kK is an isomorphism of A ⊗kK-bimodules. By (�), we have A ⊗kK � DK(A ⊗k

K) as A ⊗k K-bimodules. Thus A ⊗k K is a symmetric K-algebra.
(2) Suppose that the extension k ⊆ K is finite and A ⊗k K is a symmetric K-algebra. 

Then A ⊗kK � DK(A ⊗kK) as A ⊗kK-bimodules. By (�), we get A ⊗kK � Dk(A) ⊗kK

as A ⊗k K-bimodules. Just considering the A-bimodule structure of this isomorphism, 
we then obtain Adimk(K) � Dk(A)dimk(K) as A-bimodules. By Lemma 3.2(2), we have 
A � Dk(A) as A-bimodules, that is, A is a symmetric k-algebra. �

Theorem 1.1(2) is a summary of the next two results.

Proposition 3.9. Let k be a field and d ∈ Mn(k). Then Sn(d, k) is always 1-Auslander-
Gorenstein and Frobenius-finite. Moreover, the Frobenius part of Sn(d, k) is a symmetric 
k-algebra.

Proof. Let R be a splitting field of the characteristic polynomial of d over k. Then all 
eigenvalues of d lie in R and R is a finite extension of k. Thus d is similar to a Jordan-block 
matrix c in Mn(R). We can assume c = diag(c1, · · · , ct) ∈ Mn(R), where ci ∈ Mni

(R)
is a Jordan-block matrix with the same eigenvalue ri and ri �= rj for 1 ≤ i �= j ≤ t. By 
[24, Lemma 2.1(1)], Sn(d, R) � Sn(c, R) as R-algebras.

Let Λi := Sni
(ci, R). Then there is an algebra isomorphism Sn(c, R) � diag(Λ1, Λ2,

. . . , Λt) by [24, Lemma 2.7(2)]. According to Lemma 3.7, there holds injdim(Λi
Λi) ≤ 2 ≤

domdim(Λi) for 1 ≤ i ≤ s. It then follows from injdim(Sn(c, R)) = max{injdim(Λi
Λi) |

1 ≤ i ≤ t} and domdim(Sn(c, R)) = min{domdim(Λi) | 1 ≤ i ≤ t} that 
injdim(Sn(c, R)) ≤ 2 ≤ domdim(Sn(c, R)). Hence Sn(c, R) is 1-Auslander-Gorenstein, 
and therefore Sn(d, R) is 1-Auslander-Gorenstein. By Lemma 3.4, Sn(d, R) � Sn(d, k) ⊗k

R as rings. It follows from [15, Lemma 5] that Sn(d, k) and Sn(d, R) have the same self-
injective and dominant dimensions. Thus Sn(d, k) is 1-Auslander-Gorenstein.



704 C.C. Xi, J.B. Zhang / Journal of Algebra 609 (2022) 688–717
Let Dk := Homk(−, k), B := Sn(d, k) and Λ := Sn(d, R) � Sn(d, k) ⊗k R = B ⊗k R. 
Suppose that eBe is the Frobenius part of B with e2 = e ∈ B, so that Be is the di-
rect sum of all non-isomorphic indecomposable projective-injective modules that remain 
projective under any positive power of the Nakayama functor νB := DkHomB(−, B). 
We may assume e �= 0 and prove that Λ(e ⊗ 1) is stable under the Nakayama func-
tor DRHomΛ(−, Λ). Indeed, since the B-module Be is basic and the projective module 
νB(Be) remains projective under the functor νiB for i ≥ 0, we get Be � νB(Be). More-
over, there are the following isomorphisms of Λ-modules:

DRHomΛ(Λ(e⊗ 1),Λ)

� DRHomB⊗kR(Be⊗k R,B ⊗k R)

� DR(HomB(Be,B) ⊗k R) (by Lemma 3.3 (2))

= HomR(HomB(Be,B) ⊗k R,R)

� Homk(HomB(Be,B), R)

� Homk(HomB(Be,B), k ⊗k R)

� Homk(HomB(Be,B), k) ⊗k R (HomB(Be,B) is a finite-dimensional k-space)

� Be⊗k R

� Λ(e⊗ 1).

Since Λ is isomorphic to 
∏t

i=1 Λi as algebras, we may assume that ε1, ε2, · · · , εt ∈ Λ are 
pairwise orthogonal central idempotents such that 1 = ε1 + ε2 + · · · + εt and Λεi � Λi

as algebras for 1 ≤ i ≤ t. In the following, we identify Λεi and Λi. Then

εiΛ(e⊗ 1) � εiDRHomΛ(Λ(e⊗ 1),Λ) � DRHomΛ(Λ(e⊗ 1),Λεi)
� DRHomΛ(εiΛ(e⊗ 1),Λεi) � DRHomΛi

(εiΛ(e⊗ 1),Λi)

as Λi-modules for 1 ≤ i ≤ t. On the other hand, by the proof of Lemma 3.7, we may 
assume that Λifi1 is the indecomposable, projective-injective module which defines the 
Frobenius part of Λi for 1 ≤ i ≤ t. Thus εiΛ(e ⊗1) ∈ add(Λifi1). Moreover, for 1 ≤ i ≤ t, 
add(εiΛ(e ⊗ 1)) = add(Λifi1) if and only if εiΛ(e ⊗ 1) �= 0 if and only if εi(e ⊗ 1) �= 0. 
Thus εiΛ(e ⊗ 1) defines the Frobenius part of Λi if εi(e ⊗ 1) �= 0. Let I be the set of 
1 ≤ i ≤ t such that εi(e ⊗ 1) �= 0. Then add(Λ(e ⊗ 1)) = add(

⊕t
i=1 εiΛ(e ⊗ 1)) =

add(
⊕

i∈I Λifi1). This shows that EndΛ(Λ(e ⊗1)) � (e ⊗1)Λ(e ⊗1) = eBe ⊗kR can also 
be regarded as the Frobenius part of the algebra 

∏
i∈I Λi. Since the Frobenius part of ∏

i∈I Λi is representation-finite and symmetric, the algebra eBe ⊗k R is representation-
finite and symmetric. By [11, Lemma 3.2], if eBe ⊗k R is representation-finite, then eBe

is representation-finite, namely B is Frobenius-finite. By Lemma 3.8, if eBe ⊗k R is a 
symmetric R-algebra, then eBe is a symmetric k-algebra. �

The following corollary is motivated by comments of an anonymous referee.
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Corollary 3.10. Sn(d, k) is a gendo-symmetric algebra for any field k and d ∈ Mn(k).

Proof. We keep the notation in the proof of Proposition 3.9. By Proposition 3.9, 
domdim(B) ≥ 2. Thus we can pick a projective-injective faithful right B-module PB

and consider H := EndB
op (P ). Then HPB has a natural bimodule structure. It follows 

from P ∈ add(BB) that HEndBop(P ) ∈ add(HHomB
op (B, P )), namely HP is a generator 

for the module category of the k-algebra H. We claim that the canonical homomorphism

φ : B → EndH(P ), b �→ (p �→ pb), b ∈ B, p ∈ P

is an isomorphism of k-algebras. Indeed, it follows from domdim(B) ≥ 2 that there is an 
injective resolution of BB : 0 → BB → Pu −→ P v with positive integers u, v. Since PB

is injective, the induced sequence of H-modules:

HomBop(P v, P ) −→ HomBop(Pu, P ) −→ HomBop(B,P ) −→ 0

is exact. This implies that the following diagram is commutative and exact:

0 BB

φB

Pu

�φPu

P v

�φPv

0 HomH(HomBop(B,P ), P ) HomH(HomBop(Pu, P ), P ) HomH(HomBop(P v, P ), P )

where the vertical maps are defined canonically. Thus φB is an isomorphism of Bop-
modules. Clearly HomH(HomBop(B, P ), P ) � HomH(HP, HP ) = EndH(P ) and φ is an 
algebra isomorphism.

To prove that B is a gendo-symmetric algebra, it remains only to show that H is a 
symmetric k-algebra. Note that P⊗kR is a projective-injective Λop-module and therefore 
(P ⊗kR)εi is a projective-injective Λop

i -module for 1 ≤ i ≤ t. By the proof of Lemma 3.7
for right modules, we see that fi1Λi is the only (up to isomorphism) indecomposable 
projective-injective Λop

i -module for 1 ≤ i ≤ t. Thus we have (P ⊗k R)εi ∈ add(fi1Λi). 
Moreover, for 1 ≤ i ≤ t, add((P ⊗k R)εi) = add(fi1Λi) if and only if (P ⊗k R)εi �= 0. 
Let J := {i | 1 ≤ i ≤ t, (P ⊗k R)εi �= 0}. Then add(ΛP ⊗k R) = add(

⊕t
i=1(P ⊗k R)εi) =

add(
⊕

i∈J fi1Λi) and EndΛop(P ⊗k R) is Morita equivalent to EndΛop(
⊕

i∈J fi1Λi), but 
the latter is isomorphic to 

∏
i∈J fi1Λifi1 as algebras. By [24, Lemma 2.6(1)], fi1Λifi1 is a 

symmetric R-algebra for i ∈ J , and therefore 
∏

i∈J fi1Λifi1 is a symmetric R-algebra. It 
is known that a finite-dimensional algebra over a field Morita (or derived) equivalent to 
a symmetric algebra is itself symmetric. Thus EndΛop(P ⊗kR) is a symmetric R-algebra. 
Now, it follows from the R-algebra isomorphisms

H ⊗k R = EndBop(P ) ⊗k R � End(B⊗kR)op(P ⊗k R) = EndΛop(P ⊗k R)

that H ⊗k R is a symmetric R-algebra. Since the extension k ⊆ R is finite, H is a 
symmetric k-algebra by Lemma 3.8. Hence B is a gendo-symmetric k-algebra. �
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4. Proof of Theorem 1.2

In this section we introduce an equivalence relation on the set of partitions of n
with exactly s parts by employing elementary symmetric polynomials. We then study 
combinatorics of this relation by a matrix norm over the semiring of nonnegative integers. 
Finally, we prove Theorem 1.2.

4.1. A new equivalence relation on partitions

Recall that a nonempty set A together with two associative binary operations + and ·, 
named addition and multiplication, respectively, is called a bisemigroup. A bisemigroup 
(A, +, ·) is called a semiring if (A, +) is commutative and the distributive laws hold: 
x · (y + z) = x · y + x · z and (x + y) · z = x · z + y · z for x, y, z ∈ A. A commutative
semiring is a semiring such that the multiplication is commutative.

Definition 4.1. A bisemigroup (A, +, �) is called a quarter-ring if
(1) (A, +) and (A, �) are commutative,
(2) a � a = a for a ∈ A, and
(3) (a + b) � a = b � a for a, b ∈ A.

In a bisemigroup (A, +, ·), for any positive integer m and ai, b, d ∈ A, we write 
∑m

i=1 ai
for a1 + · · · + am, particularly, ma for 

∑m
i=1 a, and a·m for a · a · · · · · a︸ ︷︷ ︸

m

, the product of 

m copies of a.
In a quarter-ring (A, +, �), the following hold.
• If a � b = d, then a � d = d. In particular, if ai � b = d for 1 ≤ i ≤ n, then 

a1 � · · · � an � b = d.
• (ma + b) � a = a � b and (ma) � a = a for any positive integer m.
• If (A, +) is additionally a monoid with zero element 0, then 0 � a = a for a ∈ A.
• a1 � a2 � · · · � an = (a1 � a2) � (a2 � a3) � · · · � (an−1 � an).
• (a1 � a2 � · · · � an) � b = (a1 � b) � (a2 � · · · � an) = (a1 � b) � (a2 � b) � (a3 � · · · � an) = · · · =

(a1 � b) � (a2 � b) � · · · � (an � b).

Example 4.2. (1) Let N be the set of natural numbers including 0. Then N with the usual 
addition and multiplication forms a semiring. The polynomial semiring N[x1, · · · , xs]
over N in variables x1, · · · , xs is the set of all polynomials over N with the usual addition 
and multiplication of polynomials. Similarly, we define the matrix semiring Mn(R) over 
a semiring R.

(2) Let a � b := gcd(a, b) for a, b ∈ N. Then (N, +, �) is a quarter-ring, but not a 
semiring. It is called the canonical quarter-ring of natural numbers.

Recall that a multiset is a collection of elements possibly containing duplicates. For a 
multiset λ = {λ1, · · · , λs} of s elements in N, we define a map ϕλ from the polynomial 
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semiring N[x1, · · · , xs] to (N, +, �) as follows:

ϕλ : N[x1, · · · , xs] −→ N,
∑

i1,··· ,is

ai1,··· ,isx
i1
1 · · ·xis

s �→
∑

i1,··· ,is

ai1,··· ,isλ
i1
1 � · · · � λis

s .

Note that ϕλ is additive and can be extended to the matrix semiring over N[x1, · · · , xs]:

‖ − ‖
λ

: Mn(N[x1, · · · , xs]) −→ N, (aij)n×n �→ ‖(aij)‖λ
:=

∑
1≤i,j≤n

(aij)ϕλ,

where (aij)ϕλ denotes the image of aij under ϕλ. The map ‖ − ‖
λ

is called the norm 
map.

Now we recall the following fact in combinatorics [3, Theorem 6.1.1, Corollary 6.1.2, 
pp. 614-615].

Lemma 4.3. Let Vi be a finite set for 1 ≤ i ≤ s. We define

V :=
⋃

1≤j≤s

Vj , gi :=
∑

1≤k1<k2<···<ki≤s

∣∣Vk1 ∩ · · · ∩ Vki

∣∣, 1 ≤ i ≤ s,

where |S| indicates the number of elements of a set S. Then
(1) For 1 ≤ i ≤ s, the number hi of the elements of V which are members of exactly i

sets of V1, V2, · · · , Vs is given by hi =
∑s−i

k=0(−1)kCi
i+kgi+k, where Ci

i+k :=
(
i+k
i

)
= (i+k)!

i!k!
is the number of i-subsets of an (i + k)-element set.

(2) Principle of Inclusion-Exclusion: 
∣∣V ∣∣ =

∑s
i=1 hi =

∑s
i=1(−1)i+1gi. Moreover, ∑s

i=1 |Vi| =
∑s

i=1 ihi.

Let R be an algebraically closed field of characteristic p ≥ 0, and let σ ∈ Σn be of 
cycle type (λ1, λ2, · · · , λs). Suppose p � λi for 1 ≤ i ≤ s. For 1 ≤ i ≤ s, we denote by Vi

the set of all λi-th roots of unity in R and define V :=
⋃

1≤j≤s Vj . It follows from p � λi

that Vi is a cyclic group of order λi. Moreover,

Vk1 ∩ · · · ∩ Vki
= {ω ∈ R | ωd = 1}

for 1 ≤ k1 < k2 < · · · < ki ≤ s, where d := gcd(λk1 , λk2 , · · · , λki
) is the greatest 

common divisor of λkj
, 1 ≤ j ≤ i. Thus 

∣∣Vk1 ∩ · · · ∩ Vki

∣∣ = gcd(λk1 , λk2 , · · · , λki
) for 

1 ≤ k1 < k2 < · · · < ki ≤ s. We further define

gi(σ) :=
∑

1≤k1<k2<···<ki≤s

gcd(λk1 , λk2 , · · · , λki
),

and Hi(σ) to be the subset of V consisting of all elements which belong to exactly i sets 
of the given V1, V2, · · · , Vs, namely
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Hi(σ) = {v ∈ V | ∃ 1 ≤ k1 < k2 < · · · < ki ≤ s, v ∈
⋂

1≤j≤i

Vkj
, v /∈

⋃
r �=kj ,1≤j≤i

Vr}.

Clearly, Hi(σ) ∩ Hj(σ) = ∅ if 1 ≤ i �= j ≤ s. By Lemma 4.3(1), hi(σ) := |Hi(σ)| =∑s−i
k=0(−1)kCi

i+kgi+k(σ). Obviously, gi(σ) and Hi(σ) depend merely on the cycle type of 
σ. So gi(λ) and hi(λ) are well-defined functions from the set of all partitions of positive 
integers to N if we define gi = 0 and hi = 0 for i > s.

As in Example 4.2, we write a � b for gcd(a, b) for a, b ∈ Z. Then gi(x1, · · · , xs) is just 
the i-th elementary symmetric polynomial over the canonical quarter-ring of natural 
numbers:

gi(x1, · · · , xs) =
∑

1≤j1<j2<···<ji≤s

xj1 � xj2 � · · · � xji

for 1 ≤ i ≤ s. We set g0(x1, · · · , xs) = gi(x1, · · · , xs) = 0 for i > s. Clearly, gi(x1, · · · , xs)
does not depend on any order of x1 ≥ x2 ≥ · · · ≥ xs, and gs(x1, · · · , xs) | gi(x1, · · · , xs)
for 1 ≤ i ≤ s and all xi ∈ N.

Recall that a partition λ of a positive integer n is an s-tuple (λ1, · · · , λs) of integers 
satisfying λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 1 and 

∑s
i=1 λi = n. We write λ = (λ1, · · · , λs) � n

for simplicity. Each λi is called a part of λ. Sometimes it is also convenient to think of 
partitions as multisets and to write λ in the form (λa1

1 , λa2
2 , · · · , λat

t ) with λ1 > λ2 >

· · · > λt ≥ 1, where λi appears ai ≥ 1 times in the multiset of λ.
Let P (n) be the set of all partitions of n, P (s, n) the set of partitions of n with 

exactly s parts, and P ∗
s (n) the set of partitions of n with the largest part s. Then 

P (s, n) and P ∗
s (n) have the same cardinality. This can be seen from Ferrers graphs (or 

Young diagrams) of partitions.
Convention: Given partitions λ ∈ P (n) and μ ∈ P (m), we write (λ, μ) for the partition 

γ ∈ P (n + m) such that the parts of γ are the disjoint union of the parts of λ with the 
parts of μ. For example, if λ = (4, 3, 2, 1) and μ = (5, 4, 4, 2, 2, 1, 1), then (λ, μ) =
(5, 4, 4, 4, 3, 2, 2, 2, 1, 1, 1). For 1 ≤ d ∈ N, we define dλ = (dλ1, · · · , dλs) ∈ P (s, dn)
and λ− := (λ1, · · · , λs−1) = (λ1, · · · , λs−1, ̂λs) ∈ P (s − 1, n − λs). Inductively, λ−j =
(λ1, · · · , λs−j). If j ≥ s, we define λs−j = (0, · · · , 0). Then gi(dλ) = d gi(λ), and

gi(λ) = gi(λ−) +
∑

1≤j1<···<ji−1≤s−1
λj1 � · · · � λji−1 � λs

≤ gi(λ−) +
∑

1≤j1<···<ji−1≤s−1
λj1 � · · · � λji−1 ,

and therefore, if λs = 1, then gi(λ) = gi(λ−) + Ci−1
s−1. In general, we have

gi(λ−) + Ci−1
s−1 ≤ gi(λ) ≤ gi(λ−) + min{gi−1(λ−), λsC

i−1
s−1}.

Now, we introduce a new equivalence relation ∼ on P (s, n) and define a polynomial 
ελ(x) for each λ � n.
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Definition 4.4. (1) The partition polynomial ελ(x) of λ ∈ P (s, n) is

ελ(x) :=
s−1∑
i=0

(−1)s−1−i gi+1(λ)
gs(λ) xi = xs−1 − gs−1(λ)

gs(λ) xs−2 + · · ·

+ (−1)s−2 g2(λ)
gs(λ)x + (−1)s−1 g1(λ)

gs(λ) ∈ Z[x].

(2) The equivalence relation ∼ on P (s, n) (or P (n)) is given by

λ ∼ μ if ελ(x) = εμ(x).

Equivalently, λ ∼ μ if and only if gi(λ)gs(μ) = gs(λ)gi(μ) for 1 ≤ i ≤ s. This equivalence 
relation is called the polynomial equivalence of partitions in P (n).

Example 4.5. (1) ε(1n)(x) =
∑n−1

i=0 (−1)n−1−iCi+1
n xi, while ε(m,1n−m)(x) =∑n−m

i=1 (−1)n−m−iCi+1
n−m+1x

i + (−1)n−mn for 1 ≤ m < n and ε(n)(x) = 1.
(2) In P (2, p) with p a prime, any two-part partitions are polynomial equivalent be-

cause the partition polynomial of each such partition is of the form x − p. In P (3, 11), 
there hold (8, 2, 1) ∼ (7, 2, 2) ∼ (6, 4, 1) ∼ (5, 4, 2), but (8, 2, 1) � (6, 3, 2).

Remark that (−1)s−1gs(λ)ελ(1) counts the number of distinct eigenvalues of cσ in 
C, where σ ∈ Σn has the cycle type λ (see [19, Lemma 6.3]). Next, we consider when 
two partitions are polynomial equivalent. We first give a matrix interpretation of the 
polynomial equivalence.

Definition 4.6. Given λ = (λ1, · · · , λs) ∈ P (s, n), we associate it with a matrix Λλ ∈
Ms(N) by setting

Λλ :=

⎛
⎜⎜⎜⎜⎜⎝

0 d12 d13 . . . d1s
0 0 d23 . . . d2s
...

...
. . . . . .

...

0 0 · · · . . . ds−1,s
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

where dij = λi �λj is the product in the canonical quarter-ring of natural numbers. This 
matrix is called the triangular divisor matrix of λ.

Now we define a norm ‖Λλ‖ of Λλ. First, we consider λj , 1 ≤ j ≤ s, as variables and 
then regard Λλ as a matrix with the entries in the polynomial semiring N[λ1, · · · , λs], 
thinking of λi � λj as the usual monomial λiλj in N[λ1, · · · , λs]. By applying ‖ − ‖

λ

to this matrix, we get the norm ‖Λλ‖ of the triangular divisor matrix Λλ. That is, 
‖Λλ‖ =

∑
1≤i<j≤s λi � λj . Similarly, we consider the i-th power Λi

λ of Λλ in the s × s
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matrix semiring Ms(N[λ1, · · · , λs]) over N[λ1, · · · , λs] and then define ‖Λi
λ‖ := ‖Λi

λ‖λ
=

(Λi
λ)ϕλ. Note that dimR Sn(λ, R) = g1(λ) + 2‖Λλ‖ (see Lemma 2.3(1)).
The triangular divisor matrix Λλ of λ depends upon the ordering of λ1, · · · , λs. Never-

theless, we will show that the norms ‖ −‖ of triangular divisor matrices are independent 
of the choices of orderings.

Proposition 4.7. Let λ, μ ∈ P (s, n). Then
(1) ‖Λi

λ‖ = gi+1(λ) for 1 ≤ i ≤ s − 1.
(2) λ ∼ μ if and only if ‖Λi

λ‖ = ‖Λi
μ‖ for all 1 ≤ i ≤ s − 1, that is, the norms of Λi

λ

and Λi
μ are equal for all 1 ≤ i ≤ s − 1.

Proof. (1) We check ‖Λi
λ‖ = gi+1(λ) for 1 ≤ i ≤ s − 1. Since the summands of ‖Λi

λ‖ =
‖Λi−1

λ Λλ‖ are of the form λj1 � · · · �λji �λji+1 with j1 < · · · < ji < ji+1, these are precisely 
the summands of gi+1(λ). Hence ‖Λi

λ‖ = gi+1(λ).
(2) Clearly, g1(λ) = g1(μ) = n. Hence gj(λ) = gj(μ) for all 1 ≤ j ≤ s if and only if 

‖Λi
λ‖ = ‖Λi

μ‖ for all 1 ≤ i ≤ s − 1. �
An immediate consequence of Proposition 4.7 is that if {μ1, · · · , μs} is a permutation 

of {λ1, · · · , λs} then ‖Λi
λ‖ = ‖Λi

μ‖ for all 1 ≤ i ≤ s − 1 because the i-th elementary 
symmetric polynomial gi(λ) does not depend on the ordering of its variables λi.

Another consequence is the following result which is quite useful for deciding whether 
two partitions are polynomial equivalent.

Corollary 4.8. Let λ, μ ∈ P (s, n) with the corresponding triangular divisor matrices Λλ =
(dij) and Λμ = (cij), respectively. If the multisets {dij | 1 ≤ i < j ≤ s} and {cij | 1 ≤
i < j ≤ s} are equal, then λ ∼ μ.

Proof. That the multisets {dij | 1 ≤ i < j ≤ s} and {cij | 1 ≤ i < j ≤ s} are equal 
means g2(λ) = g2(μ). Since any summand λj1 �λj2 � · · · �λji of gi(λ) for i ≥ 3 is a product 
dj1,j2 � dj2,j3 � · · · � dji−1,ji (in the canonical quarter-ring (N, +, �) of i − 1 elements of the 
multiset {dij | 1 ≤ i < j ≤ s} with the increasing indices, the summation of all such 
products of elements in the multiset of λ equals the one in the multiset of μ. Hence 
gi(λ) = gi(μ) for 2 ≤ i ≤ s. Clearly, g1(λ) = g1(μ). Thus λ ∼ μ. �

Note that the converse of Lemma 4.8 fails. For example, λ = (12, 4, 3, 1) ∼
μ = (10, 5, 3, 2), but the corresponding multisets for λ and μ are {4, 3, 1, 1, 1, 1} and 
{5, 1, 2, 1, 1, 1}, respectively, they are clearly different. This example also shows that if 
the common part 3 is removed from λ and μ, then the resulting partitions (12, 4, 1) and 
(10, 5, 2) are no longer polynomial equivalent.

Corollary 4.9. Let λ = (λ1, · · · , λs), μ = (μ1, · · · , μs) ∈ P (s, n). If λi � λj = d = μp � μq

for all 1 ≤ i �= j ≤ s and 1 ≤ p �= q ≤ s, then λ ∼ μ. In particular, if λ1, · · · , λs are 
pairwise coprime and if μ1, · · · , μs are pairwise coprime, then λ ∼ μ.
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Proof. Under the assumption, the triangular divisor matrices Λλ and Λμ are equal. Hence 
Corollary 4.9 follows immediately from Corollary 4.8. �

By the definition of partition polynomials ελ(x), we have the following useful fact, 
which implies that, when considering λ ∼ μ, we can always assume that λ1, · · · , λs are 
coprime and that μ1, · · · , μs are coprime. By dλ we mean (dλ1, dλ2, · · · , dλs).

Lemma 4.10. Let λ, μ ∈ P (s, n). Then λ ∼ μ in P (s, n) if and only if dλ ∼ dμ in P (s, dn)
for some integer d ≥ 1 if and only if dλ ∼ dμ in P (s, dn) for all integers d ≥ 1.

Proof. The coefficients of the monic partition polynomial εdλ(x) are given by gi(dλ)/
gs(dλ). As we know, gi(dλ) = dgi(λ) for all i. Thus εdλ(x) = ελ(x). �
Lemma 4.11. Let λ, μ ∈ P (s, n) and 1 ≤ m ∈ N such that {λj �m | 1 ≤ i ≤ s} = {μj �m |
1 ≤ j ≤ s} as multisets. Then λ ∼ μ if and only if (λ, m) ∼ (μ, m) in P (s + 1, n + m). 
In particular, suppose λj � m = d = μj � m for 1 ≤ j ≤ s. Then λ ∼ μ if and only if 
(λd , 

m
d ) ∼ (μd , 

m
d ) in P (s + 1, n+m

d ).

Proof. The last conclusion in Lemma 4.11 follows from Lemma 4.10. We prove the other 
one. Let λ̄ = (λ, m) ∈ P (s + 1, n + m). Since the multisets {λj � m | 1 ≤ i ≤ s} and 
{μj �m | 1 ≤ j ≤ s} are equal, the summation 

∑
j1<j2<···<ji−1

(λj1 �m) � · · · � (λji−1 �m)
is equal to 

∑
j1<j2<···<ji−1

(μj1 � m) � · · · � (μji−1 � m). In particular, gs+1(λ̄) = gs+1(μ̄). 
Clearly, for 1 ≤ i ≤ s, we have

gi(λ̄) = gi(λ) +
∑

1≤ji<···<ji−1≤s

λj1 � · · · � λji−1 �m

= gi(λ) +
∑

1≤ji<···<ji−1≤s

(λj1 �m) · · · � (λji−1 �m).

Thus, for 1 ≤ i ≤ s, gi(λ̄) = gi(μ̄) if and only if gi(λ) = gi(μ). This shows 
Lemma 4.11. �

A special case of Lemma 4.11 is that λ ∼ μ if and only if (λ, 1) ∼ (μ, 1). A slightly 
generalized form of the last statement of Lemma 4.11 is as follows.

Lemma 4.12. Assume λ ∼ μ in P (s, n) and γ ∼ δ in P (t, m). If λi � γj = μp � δq for all 
1 ≤ i, p ≤ s, 1 ≤ j, q ≤ t, then (λ, γ) ∼ (μ, δ) in P (s + t, n + m).

Proof. By assumption, we suppose d := λi � γj = μp � δq. Now, let λ̄ = (λ, γ) and 
μ̄ = (μ, δ). We calculate gi(λ̄) and gi(μ̄) for 1 ≤ i ≤ s + t. Clearly, g1(λ, γ) = g1(μ, δ)
and gs+t(λ, γ) = gs+t(μ, δ). We may assume s ≤ t and consider the following cases.
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(1) 1 < i ≤ s ≤ t.

gi(λ̄) =
∑

1≤j1<···<ji≤s

λj1 � · · · � λji +
∑

1≤k1<···<ki≤t

γk1 � · · · � γki

+
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

λj1 � · · · � λjp � γk1 � · · · � γkq

= gi(λ) + gi(γ) +
∑

(p,q):p+q=i,1≤p≤s,1≤q≤t

dCp
sC

q
t

= gi(μ) + gi(δ) +
∑

(p,q):p+q=i,1≤p≤s,1≤q≤t

dCp
sC

q
t

= gi(μ) + gi(δ)

+
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

μj1 � · · · � μjp � δk1 � · · · � δkq

= gi(μ̄).

(2) s + 1 ≤ i < s + t. In this case, we first assume i ≤ t. Then

gi(λ̄) =
∑

1≤k1<···<ki≤t

γk1 � · · · � γki

+
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

λj1 � · · · � λjp � γk1 � · · · � γkq

= gi(γ) +
∑

(p,q):p+q=i,1≤p≤s,1≤q≤t

dCp
sC

q
t

= gi(δ) +
∑

(p,q):p+q=i,1≤p≤s,1≤q≤t

dCp
sC

q
t

= gi(δ) +
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

μj1 � · · · � μjp � δk1 � · · · � δkq

= gi(μ̄).

Next, we assume t < i. Then

gi(λ̄) =
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

λj1 � · · · � λjp � γk1 � · · · � γkq

=
∑

(p,q):p+q=i,1≤p≤s,1≤q≤t

dCp
sC

q
t

=
∑

(p,q):p+q=i,1≤p,q≤i

∑
1≤j1<···<jp≤s,1≤k1<···<kq≤t

μj1 � · · · � μjp � δk1 � · · · � δkq

= gi(μ̄).
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Thus gi(λ̄) = gi(μ̄) for all 1 ≤ i ≤ s + t. �
Finally, we point out that, for λ ∈ P (s, n), gi+1(λ) can be calculated graphically by 

defining a valued quiver Qλ and writing out all paths of length i, and then summarizing
all evaluations of the paths in (N, +, �). For i = 0, we understand g1(λ) =

∑s
i=1 λi = n. 

The quiver Qλ has the vertex set {1, 2, · · · , s}, and for i < j, there is an arrow from i to 
j valued dij . For instance, λ = (12, 4, 3, 1), the quiver Qλ is

1
4

3
1

2
1

1

3
1

4.

Thus g4(λ) = 4 �1 �1 = 1, g3(λ) = 4 �1 +4 �1 +3 �1 +1 �1 = 4, g2(λ) = 4 +3 +1 +1 +1 +1 =
11, g1(λ) = 20.

4.2. Isomorphisms of invariant matrix algebras

This section is devoted to a proof of Theorem 1.2. We first show an auxiliary lemma.

Lemma 4.13. Let R be a division ring of characteristic p ≥ 0, and let σ ∈ Σn be of cycle 
type (λ1, λ2, · · · , λs) with λi ≥ 1 for all 1 ≤ i ≤ s. Then

(1) Sn(σ, R) is semisimple if and only if p � λi for 1 ≤ i ≤ s.
(2) If R is an algebraically closed field and Sn(σ, R) is semisimple, then

Sn(σ,R) � R⊕h1(σ) ×M2(R)⊕h2(σ) × · · · ×Ms(R)⊕hs(σ)

as algebras, where R⊕h1(σ) denotes the direct product of h1(σ) copies of the ring R.

Proof. (1) Clearly, Mn(R) is a simple artinian ring if R is a division ring. Let rad(A)
denote the Jacobson radical of a ring A. If Sn(σ, R) is semisimple, that is rad

(
Sn(σ, R)

)
=

0, then rad
(
fiSn(σ, R)fi

)
= firad

(
Sn(σ, R)

)
fi = 0 for all 1 ≤ i ≤ s. This means that all 

fiSn(σ, R)fi are semisimple. By Lemma 2.5(1), the group algebra R[Cλi
] is semisimple. 

Hence p � λi for all i. Conversely, if p � λi for all i, then p does not divide the least 
common multiple of λ1, λ2, · · · , λs, that is, the order of G = 〈σ〉 is invertible in R. In 
this case, Sn(σ, R) is semisimple by [14, Theorem 1.15, p. 15], which says that if a finite 
group acts on a semisimple artinian ring with its order invertible in the ring, then the 
ring of invariants is semisimple.

(2) Let cσ := e1,(1)σ + e2,(2)σ + · · · + en,(n)σ be the permutation matrix in Mn(R)
corresponding to σ. Then cσ = diag{cσ1 , cσ2 , · · · , cσs

}, where cσi
∈ Mλi

(R) is defined 
similarly. For 1 ≤ i ≤ s, the eigenvalues of cσi

are distinct and denoted by Vi. Hence 
the Jordan canonical form of cσi

has only Jordan blocks of order 1, namely the diagonal 
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matrix diag(1, ωi, · · · , ωλi−1
i ), where ωi is a primitive root of the unity of order λi in R. 

This implies that the Jordan canonical form of cσ is the diagonal matrix

c := diag(1, ω1, · · · , ωλ1−1
1 , · · · , 1, ωi, · · · , ωλi−1

i , · · · , 1, ωs, · · · , ωλs−1
s ).

For 1 ≤ i ≤ s, we write Hi(σ) = {ri1, ri2, · · · , rihi(σ)} (see the notation above Defini-
tion 4.4). Then the algebraic and geometric multiplicities of the eigenvalue rij of cσ are 
just i for 1 ≤ j ≤ hi(σ). Thus c is similar to

d := diag(r11I1, r12I1, · · · , r1h1(σ)I1, · · · , ri1Ii, ri2Ii, · · · , ri hi(σ)Ii, · · · ,
rs1Is, rs2Is, · · · , rs hs(σ)Is)

with 
∑s

i=1 i hi(σ) = n. Recall that Ii denotes the identity matrix in Mi(R). Hence 
the matrix cσ is similar to the matrix d. By Lemma 2.2 (see also [24, Lemma 2.1]), 
Sn(σ, R) = Sn(cσ, R) := {x ∈ Mn(R) | xcσ = cσx} � Sn(d, R) := {x ∈ Mn(R) |
xd = dx} as algebras. Note that rij �= rkl for (i, j) �= (k, l) with 1 ≤ i, k ≤ s, 1 ≤
j ≤ hi(σ), 1 ≤ l ≤ hk(σ). It follows from [24, Lemma 2.2] that the centralizer algebra 
Sn(d, R) is isomorphic to R⊕h1(σ) ×M2(R)⊕h2(σ) × · · · ×Ms(R)⊕hs(σ). Thus Sn(σ, R) �
R⊕h1(σ) ×M2(R)⊕h2(σ) × · · · ×Ms(R)⊕hs(σ) as algebras. �

Lemma 4.13(2) shows that the multiplicity of the matrix algebra Mi(R) in a Wedder-
burn decomposition of the semisimple algebra Sn(λ, R) is given by hi(λ).

Recall that two rings R and S are said to be Morita equivalent if the two categories 
R-Mod and S-Mod (or equivalently R-mod and S-mod) are equivalent.

Proof of Theorem 1.2. (1) follows from Lemma 4.13(1).
(2) Assume that R is an algebraically closed field and that Sn(σ, R) and Sm(τ, R) are 

semisimple. By Lemma 4.13(2), we have

Sn(σ,R) � R⊕h1(σ) ×M2(R)⊕h2(σ) × · · · ×Ms(R)⊕hs(σ)

and

Sm(τ,R) � R⊕h1(τ) ×M2(R)⊕h2(τ) × · · · ×Mt(R)⊕ht(τ).

(i) It follows from hi(σ) ≥ 0, hi(τ) ≥ 0 for 1 ≤ i ≤ s, hs(σ) = λ1 � · · · � λs �= 0 and 
ht(τ) �= 0 that

R⊕h1(σ)×M2(R)⊕h2(σ)×· · ·×Ms(R)⊕hs(σ) � R⊕h1(τ)×M2(R)⊕h2(τ)×· · ·×Mt(R)⊕ht(τ)

as algebras if and only if s = t and hi(σ) = hi(τ) for all 1 ≤ i ≤ s.
Suppose Sn(σ, R) � Sm(τ, R), that is, we assume that s = t and hi(σ) = hi(τ)

for all i. We show that m = n and ελ(x) = εμ(x). In fact, since 
∑s

i=1 i hi(σ) = n
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and 
∑t

i=1 i hi(τ) = m, we have m = n. By the definitions of hs(σ) and hs(τ), we get 
hs(σ) = gs(σ) and hs(τ) = gs(τ). It follows from hs(σ) = hs(τ) that gs(σ) = gs(τ). 
Now, by the definitions hs−1(σ) and hs−1(τ) and Lemma 4.3(1), we have hs−1(σ) =
gs−1(σ) −Cs−1

s gs(σ) and hs−1(τ) = gs−1(τ) −Cs−1
s gs(τ). It then follows from hs−1(σ) =

hs−1(τ) and gs(σ) = gs(τ) that gs−1(σ) = gs−1(τ). Continuing this procedure, we get 
gi(σ) = gi(τ) for 1 ≤ i ≤ s − 2. Thus, if hi(σ) = hi(τ) for 1 ≤ i ≤ s, then gi(σ) = gi(τ)
for 1 ≤ i ≤ s and ελ(x) = εμ(x).

Conversely, if m = n and ελ(x) = εμ(x), then s = t and gs(τ)gi(σ) = gs(σ)gi(τ)
for 1 ≤ i ≤ s − 1. As g1(σ) = n = m = g1(μ), we get gs(σ) = gs(τ). Thus it follows 
from ελ(x) = εμ(x) that gi(σ) = gi(τ) for all 1 ≤ i ≤ s. By Lemma 4.3(2), we obtain 
hi(σ) = hi(τ) for all i. Hence Sn(σ, R) � Sm(τ, R).

(ii) Since Sn(σ, R) � R⊕h1(σ) ×M2(R)⊕h2(σ) × · · · ×Ms(R)⊕hs(σ) by Lemma 4.13(2), 
the basic algebra B(σ) of Sn(σ, R) is isomorphic to R⊕h1(σ)×R⊕h2(σ)×· · ·×R⊕hs(σ). As 
is known, Sn(σ, R) and B(σ) are always Morita equivalent, while Sn(σ, R) and Sm(τ, R)
are Morita equivalent if and only if their basic algebras B(σ) and B(τ) are isomor-
phic. Clearly, B(σ) � B(τ) if and only if 

∑s
i=1 hi(σ) =

∑t
i=1 hi(τ). By Lemma 4.3(2), ∑s

i=1 hi(σ) =
∑t

i=1 hi(τ) if and only if the matrices cσ and cτ have the same number of 
distinct eigenvalues in R if and only if 

∑s
i=1(−1)i+1gi(σ) =

∑t
i=1(−1)i+1gi(τ). There-

fore Sn(σ, R) and Sm(τ, R) are Morita equivalent if and only if 
∑s

i=1(−1)i+1gi(σ) =∑t
i=1(−1)i+1gi(τ) if and only if (−1)s−1gs(σ)ελ(1) = (−1)t−1gt(τ)εμ(1). Note that gs(σ)

is the greatest common divisor of λ1, · · · , λs. �
Theorem 1.2 tells us that the foregoing consideration on the polynomial equivalence 

λ ∼ μ in P (s, n) provides us with many isomorphisms of invariant matrix algebras. 
For example, S38

(
(17, 11, 8, 2), C

)
� S38

(
(17, 11, 6, 4), C

)
by repeatedly applying Corol-

lary 4.11 to the polynomial equivalence (8, 2) ∼ (6, 4) in P (2, 10). Also, for any prime 
number p ≥ 5 and two-part partitions λ and μ of p, it follows from Theorem 1.2 that 
Sp(λ, C) � Sp(μ, C). For instance, S5((4, 1), C) � S5((3, 2), C) � C ×C ×C ×M2(C).

Remark that the condition m = n in Theorem 1.2(2)(i) is needed. For example, both 
λ = (4, 2, 2) and μ = (2, 1, 1) have the same partition polynomial x2 − 3x + 4, but 
S8(λ, R) �� S4(μ, R) for any ring R.

As a consequence of Theorem 1.2 and Corollary 4.9. we have the corollary immedi-
ately.

Corollary 4.14. Let R be an algebraically closed field of characteristic p ≥ 0, and let 
σ ∈ Σn and τ ∈ Σm be of cycle types (λ1, λ2, · · · , λs) and (μ1, μ2, · · · , μt), respectively. 
Assume that p � λi and p � μj for 1 ≤ i ≤ s and 1 ≤ i ≤ t. If λ1, · · · , λs are pairwise 
coprime and if μ1, · · · , μt are pairwise coprime, then

(1) Sn(σ, R) � Sm(τ, R) if and only if n = m and s = t.
(2) Sn(σ, R) and Sm(τ, R) are Morita equivalent if and only if n − s = m − t.
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Finally, we mention that there are a few issues worthy of further consideration, which 
have directly been suggested in this section but not answered. We formalize some of 
them as the following questions.

Questions. (1) When are Sn(λ, R) and Sn(μ, R) isomorphic (or derived equivalent) for 
λ, μ ∈ P (s, n) and R a unitary ring?

(2) Given a polynomial f(x) = xs−1 − as−2x
s−2 + · · · + (−1)s−i−1aix

i + · · · +
(−1)s−2a1x + (−1)s−1a0 ∈ Z[x] with s ≥ 3 and ai ≥ Ci+1

s for 1 ≤ i ≤ s − 2, is 
there a partition λ ∈ P (s, n) for some n such that ελ(x) = f(x)? In other words, what 
are the necessary and sufficient conditions for a monic polynomial f(x) to be a partition 
polynomial?

(3) Are ελ(x)εμ(x) and ελ(εμ(x)) again partition polynomials? Or more generally, 
how do the operations of partitions correspond to the ones of partition polynomials?

(4) Let I(s, n) be the set of equivalence classes of P (s, n) with respect to the poly-
nomial equivalence relation. Then I(s, n) is the union of distinct equivalence classes. 
Let E(s, n, j) be the set of those equivalence classes that contain j elements of P (s, n). 
Define p(s, n), i(s, n) and e(s, n, j) to be the numbers of elements in P (s, n), I(s, n) and 
E(s, n, j), respectively. What are the generating functions of i(s, n) and e(s, n, j)?

Note that the generating function for p(s, n) is 
∑∞

n=0 p(s, n)qn = qs

(1−q)(1−q2)···(1−qs)
(see [1, Chapter 6]).

(5) Describe partitions λ ∈ P (s, n) that are self-equivalent, that is, if μ ∈ P (s, n) such 
that μ ∼ λ, then μ = λ. For instance, λ = (4, 4, 1) is self-equivalent with ε(4,4,1)(x) =
(x − 3)2, but μ = (5, 2, 2) is not self-equivalent.

(6) For which partitions λ are ελ(x) irreducible polynomials over Q?
(7) What are the necessary and sufficient conditions for λ ∼ μ in P (s, n) in terms of 

the conjugate partitions of λ and μ?
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