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1. Introduction

Self-injective algebras have played a very important role in various areas of mathematics and physics 
(see, for example, [1], [12], and the references therein). In the representation theory of algebras, the famous, 
but still not yet solved Auslander-Reiten conjecture on stable equivalences is reduced to self-injective Artin 
algebras (see [13]). The conjecture states that two Artin algebras have the same number of isomorphism 
classes of non-projective simple modules whenever they are stably equivalent. Moreover, self-injective Artin 
algebras are closed under stable equivalences (with a mild condition) (see [14]). Also, self-injective algebras 
over an algebraically closed field are closed under derived equivalences [2]. This result seems to be extended 
to algebras over any field in [17], but we have difficulty to understand some arguments in its proof there. 
On the other hand, weakly symmetric algebras over an algebraically closed field are preserved under derived 
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equivalences [3]. It is unknown whether this is true for algebras over an arbitrary field, while symmetric 
algebras over any field are closed under derived equivalences (see [16]).

Given a self-injective Artin algebra Λ, the Nakayama functor of Λ is a self-equivalence on the category 
of finitely generated projective Λ-modules. Hence it permutes the complete set of isomorphism classes of 
indecomposable projective Λ-modules. This permutation is called the Nakayama permutation, which is 
uniquely determined by Λ, up to conjugation.

This note continues the study of self-injective algebras under derived equivalences. First, we show that, 
if two self-injective Artin algebras are derived equivalent, then their Nakayama permutations are conjugate 
(see Theorem 4.1). We then give an elementary approach to Rickard-Rouquier’s result that self-injective 
algebras over an arbitrary field are closed under derived equivalences, and we further prove that derived 
equivalences also preserve weakly symmetric algebras over any field (see Corollary 5.4).

The strategy for proving the first result uses an idea from categorification, namely we first investigate 
derived Nakayama functors on the homotopy categories of finitely generated projective modules, and then 
pass to the Grothendieck groups of these homotopy categories. In this way, the Nakayama permutations 
can be realized by derived Nakayama functors. The elementary proof of Rickard-Rouquier’s result is based 
on studying relations between self-injective algebras and extensions of fields. Consequently, we prove the 
desired result for weakly symmetric algebras and self-injective algebras.

The paper is organized as follows: In Section 2 we fix notation and recall basic facts on derived equiva-
lences. In Section 3 we study Grothendieck groups of triangulated categories. In Section 4 we prove that the 
Nakayama permutations of derived equivalent, self-injective Artin algebras are conjugate. Also, we point 
out that Rickard’s result on derived equivalences preserving symmetry for finite-dimensional algebras can 
be generalized to the one for Artin algebras (see Remark 4.3). In Section 5 we show that finite-dimensional, 
weakly symmetric algebras over an arbitrary field are closed under derived equivalences, and provide an 
elementary proof of Rickard-Rouquier’s result on self-injective algebras under derived equivalences. Finally, 
we deduce a series of consequences of our main results.

2. Preliminaries

In this section we fix notation and recall some definitions and results on derived equivalences.
Throughout the paper, all modules are assumed to be left modules. For a (unitary associative) ring Λ, 

we denote by Λ-mod the category of finitely generated Λ-modules, by Λ-proj the full subcategory of Λ-mod 
consisting of projective Λ-modules, and by K b(Λ-proj) the bounded homotopy category of complexes over 
Λ-proj. As usual, we write Db(Λ) for the bounded derived category of Λ-mod.

Artin algebras A and B are derived equivalent if Db(A) and Db(B) are equivalent as triangulated cate-
gories. Derived equivalences can be described by tilting complexes [15]. We recall the descriptions just for 
Artin algebras below.

Let A be an Artin algebra. A complex X• in K b(A-proj) is called a tilting complex (see [15]) if 
HomK b(A-proj)(X•, X•[i]) = 0 for i �= 0 and X• generates K b(A-proj) as a triangulated category.

The description of derived equivalences by tilting complexes is given by the following theorem (see 
[8,11,15,16]).

Theorem 2.1. Suppose that A and B are Artin algebras over a commutative Artin ring R. Then the following 
are equivalent.

(1) A and B are derived equivalent.
(2) There exists a tilting complex T • ∈ K b(A-proj) such that B � EndDb(A)(T •)op as algebras.
(3) There is a triangle equivalence from K b(A-proj) to K b(B-proj).
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An Artin algebra A is said to be symmetric if AAA � DA as A-A-bimodules, where D is the usual 
duality of the Artin algebra A; weakly symmetric if the injective hull and projective cover of every simple 
A-module are isomorphic; Frobenius if AA � DA as A-modules; and self-injective if AA is injective. A basic 
self-injective algebra is a Frobenius algebra. By a basic algebra we mean an Artin algebra A such that AA
is a direct sum of pairwise non-isomorphic indecomposable modules.

Let n be a positive integer. We denote by Σn the symmetric group of permutations on {1, 2, · · · , n}. For 
an object X in an additive category, X⊕n stands for the direct sum of n copies of X.

3. Grothendieck groups of triangulated categories

In this section we study basic properties of the Grothendieck groups of triangulated categories, and their 
behaviors under triangle equivalences. We start with the following definition in [7,8].

Let C be a triangulated category with the shift functor [1]. Assume further that C is essentially small, that 
is, the isomorphism classes of objects of C form a set. For X ∈ C, we denote by [X] the isomorphism class 
containing X. Let C̃ be the set of the isomorphism classes [X] of objects X in C. Let F(C) be the free abelian 
group generated by all elements of C̃, and let F0(C) be the subgroup of F(C) generated by [X] − [Y ] + [Z]
for all triangles

X −→ Y −→ Z −→ X[1]

in C. The Grothendieck group K0(C) of C is defined to be the quotient group F(C)/F0(C). We write [X] for 
the coset of [X] in K0(C).

We denote by

d : C̃ −→ K0(C)

the composition of the canonical maps C̃ ↪→ F(C) � K0(C). Then d([X]) = [X] for any object X in C.
For a triangle functor F : C → D of essentially small triangulated categories C and D, one has naturally 

a map F̃ : C̃ → D̃ defined by F̃ ([X]) = [F (X)] for [X] in C̃. Since the images of two isomorphic objects in 
C under F are still isomorphic in D, the map F̃ is well defined.

If A is a ring and C = K b(A-proj), we simply write K0(A) for K0(C).

Lemma 3.1. Let C be an essentially small triangulated category.
(1) For objects X and Y in C,

d([X ⊕ Y ]) = d([X]) + d([Y ]) and d([X[i]]) = (−1)id([X]) for i ∈ Z.

(2) The map d is surjective.

Proof. For objects X and Y in C, there is a canonical triangle X → X⊕Y → Y
0→ X[1]. Thus d([X⊕Y ]) =

d([X]) + d([Y ]). In particular, for the zero object 0 of C, there holds d([0]) = 0 in K0(C). The triangle 

X → 0 → X[1] 
−idX[1]−−−−−→ X[1] shows d([X[1]]) = −d([X]). This implies d([X[i]]) = (−1)id([X]) for i ∈ Z.

Let α ∈ K0(C). Without loss of generality, we may assume that α is the coset of an element

r1[X1] + · · · + rm[Xm] + rm+1[Xm+1] + · · · + rn[Xn]

in F(C), where all Xj are objects in C, rj < 0 for 1 � j � m, and rj > 0 for m + 1 � j � n. Then
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d([X1[1]⊕−r1 ⊕ · · · ⊕Xm[1]⊕−rm ⊕X
⊕rm+1
m+1 ⊕ · · · ⊕X⊕rn

n ]) = α.

So d is surjective. �
Now, assume that A is a semiperfect ring, that is, every finitely generated left (or right) A-module has 

a projective cover, or equivalently, A has a complete orthogonal set {e1, · · · , en} of idempotents with each 
eiAei a local ring.

Let X• ∈ K b(A-proj) be of the form

X• = · · · −→ 0 −→ Xi di
X−−→ Xi+1 di+1

X−−−→ · · · −→ Xi+m −→ 0 −→ · · ·

Denote by σ�tX
• the brutal truncation of X• at the degree t, that is, (σ�tX

•)j = Xj for j � t and 0
otherwise. Then there is a series of triangles:

Δj : σ�j−1X
•[−1]

f•
j−→ Xj [−j] −→ σ�jX

• −→ σ�j−1X
•

for i + 1 ≤ j ≤ i + m, where σ�i+mX• = X• and f•
j is defined by f j

j = dj−1
X and fs

j = 0 for s �= j. By 
Lemma 3.1, d([X•]) =

∑
i�j�i+m(−1)jd([Xj ]).

Since A is a semiperfect ring, there are finitely many pairwise non-isomorphic, indecomposable projective 
A-modules. Let {P1, · · · , Pn} be a complete set of pairwise non-isomorphic, indecomposable projective A-
modules. For i ≤ j ≤ i + m, we write Xj �

⊕
1�s�n P

⊕tjs
s with tjs ∈ N, and λs :=

∑
i�j�i+m(−1)jtjs . 

Then d([X•]) =
∑

1�s�n λsd([Ps]). As d is surjective, we see that K0(A) is an abelian group generated by 

these [Ps], 1 ≤ s ≤ n.
Next, we define dim(X•) = (λ1, · · · , λn) ∈ Zn for the complex X•. If Y • is a complex in K b(A-proj)

such that Y • � X• in K b(A-proj), then dim(Y •) = dim(X•). Moreover, for any morphism f• : X• → Z•

in K b(A-proj), there holds dim(cone(f•)) = dim(Z•) − dim(X•), where cone(f•) stands for the mapping 
cone of f•. Hence we get a homomorphism of abelian groups:

dim : K0(A) −→ Zn, [X•] �→ dim(X•).

This shows that the set {dim([P1]), dim([P2]), · · · , dim([Pn])} forms a basis of the free abelian group Zn, 
and therefore K0(A) is a free abelian group generated by [P1], [P2], · · · , [Pn].

Not all Grothendieck groups of (essentially small) triangulated categories are free. For example, if A is a 
finite-dimensional, self-injective algebra such that the Cartan matrix of A has an elementary divisor different 
from 1, then the Grothendieck group of the stable module category A-mod (as a triangulated category) is 
not free. For more details, see [18, Section 5.7.1].

The following proposition on Grothendieck groups is straightforward.

Proposition 3.2. Suppose that A and B are semiperfect rings. If F : K b(A-proj) → K b(B-proj) is a triangle 
equivalence, then F induces a group isomorphism F : K0(A) → K0(B) such that the diagram (of maps) is 
commutative:

˜K b(A-proj) F̃

d

˜K b(B-proj)

d

K0(A) F
K0(B)

where ˜K b(A-proj) stands for the set of the isomorphism classes of objects in K b(A-proj).
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4. Nakayama permutations of self-injective algebras

In this section we will prove that Nakayama permutations of derived equivalent, self-injective Artin 
algebras are conjugate.

Let A be an Artin algebra over a commutative Artin ring R. The Nakayama functor νA : A-mod → A-mod
is defined by νA := (DA) ⊗A −, where D is the usual duality of an Artin algebra. Clearly, νA induces a left 
derived functor

LνA : Db(A) −→ Db(A),

which restricts to a triangle equivalence

LνA : K b(A-proj) −→ K b(A-inj),

where A-inj denotes the category of finitely generated injective A-modules.

Now, assume that A is a self-injective Artin algebra. Since A(DA) and (DA)A are projective generators, νA
is a self-equivalence on A-mod, and restricts to a self-equivalence on A-proj. Let {P1, · · · , Pn} be a complete 
set of pairwise non-isomorphic, indecomposable projective A-modules. Then νA induces a permutation on 
{P1, · · · , Pn}, called the Nakayama permutation of A. Precisely, the Nakayama permutation σA is defined 
on {1, · · · , n} by

νA(Pi) � PσA(i)

for i ∈ {1, · · · , n}. Clearly, up to conjugation, the Nakayama permutation σA of A does not depend on the 
order of the Pi.

Let B be another self-injective Artin algebra over R, and let {Q1, · · · , Qm} be a complete set of pairwise 
non-isomorphic, indecomposable projective B-modules. Assume that A and B are derived equivalent. Then 
m = n and σB is again a permutation of {1, · · · , n}. Our first main result reveals a precise relation between 
σA and σB .

Theorem 4.1. If A and B are derived equivalent, self-injective Artin algebras, then σA and σB are conjugate.

To prove Theorem 4.1, we first show a technical lemma on the left derived functors of Nakayama functors.
Let A be a self-injective Artin algebra. Then both A(DA) and (DA)A are projective. By definition, the 

left derived functor of the Nakayama functor νA is given explicitly as follows:

LνA : K b(A-proj) −→ K b(A-proj), X• = (Xi, diX) �→
(
νA(Xi), νA(diX)

)
.

As νA is a self-equivalence of A-proj (or A-mod), we see that LνA is a triangle self-equivalence of K b(A-proj). 
Clearly, LνA(P ) � νA(P ) for P ∈ A-proj.

The next lemma is true for standard derived equivalences and for finite-dimensional algebras by [16, 
Proposition 5.2], but we will generalize it to arbitrary derived equivalences between arbitrary Artin algebras. 
Moreover, our proof here is more elementary than the one in [16].

Lemma 4.2. Suppose that A and B are Artin algebras. If F : Db(A) → Db(B) is a triangle equivalence, then 
for any X• in K b(A-proj), FLνA(X•) � LνBF (X•) in Db(B) which is natural in X•. In particular, if A
and B are self-injective Artin algebras and F : K b(A-proj) → K b(B-proj) is a triangle equivalence, then 
there is a natural isomorphism FLνA � LνBF : K b(A-proj) → K b(B-proj).
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Proof. For X• in K b(A-proj) and Y • in Db(A), we may consider HomDb(A)(X•, Y •) and HomDb(A)(Y •,

LνA(X•)) as the degree-zero homologies of the total complexes of the double complexes Hom••
A (X•, Y •)

and Hom••
A (Y •, LνA(X•)), respectively. It is well known that, for any X in A-proj and Y in A-mod, 

DHomA(X, Y ) � HomA(Y, νA(X)) which is natural in X and Y . Thus DHom••
A (X•, Y •) � Hom••

A (Y •,

LνA(X•)) naturally as double complexes for X• ∈ K b(A-proj) and Y • ∈ Db(A). Taking homology in 
degree zero, we obtain

DHomDb(A)(X•, Y •) � HomDb(A)(Y •,LνA(X•)) (1)

which is natural in X• ∈ K b(A-proj) and Y • ∈ Db(A). On the other hand, as F is an equivalence, there 
are natural isomorphisms:

DHomDb(A)(X•, Y •) � DHomDb(B)(F (X•), F (Y •)) (2)

and

HomDb(A)(Y •,LνA(X•)) � HomDb(B)(F (Y •), F (LνA(X•))). (3)

Using the B-module version of (1), we have the natural isomorphism:

DHomDb(B)(F (X•), F (Y •)) � HomDb(B)(F (Y •),LνB(F (X•))). (4)

Thus it follows from (3), (1), (2) and (4) that

HomDb(B)(F (Y •), F (LνA(X•))) � HomDb(B)(F (Y •),LνB(F (X•)))

which is natural in X• ∈ K b(A-proj) and Y • ∈ Db(A). As F is an equivalence, we obtain FLνA(X•) �
LνBF (X•) in Db(B) which is natural in X• ∈ K b(A-proj). When A and B are self-injective and when F
restricts to a triangle equivalence K b(A-proj) → K b(B-proj), we have the last statement of Lemma 4.2. �
Remark 4.3. Lemma 4.2 can be applied to generalize [16, Corollary 5.3] for finite-dimensional algebras 
over a field to the one for Artin algebras, namely an Artin algebra B derived equivalent to a symmetric 
Artin algebra A is itself symmetric. Indeed, let F : Db(A) → Db(B) be a triangle equivalence. Since A
is symmetric, DA � A as A-A-bimodules, and therefore LνA � id naturally on Db(A). By Lemma 4.2, 
LνBF (X•) � FLνA(X•) � F (X•) in Db(B) naturally for X• in K b(A-proj). As F is an equivalence, 
LνB � id naturally on K b(B-proj). Hence DB � B as B-modules. If we apply the natural isomorphism 
LνB � id to morphisms B → B in K b(B-proj) given by right multiplication of elements in B, then the 
isomorphism DB � B is actually an isomorphism of B-B-bimodules, and therefore B is a symmetric algebra.

For a unitary ring A, we denote by Mn(A) the full n × n matrix ring over A. If σ ∈ Σn, then the 
permutation matrix cσ of σ over C is the n × n matrix with 1 in the (i, σ(i))-entry for 1 ≤ i ≤ n and with 
0 for all other entries.

Lemma 4.4. Let σ1 and σ2 be permutations in Σn. Then σ1 and σ2 are conjugate in Σn if and only if cσ1

and cσ2 are similar in Mn(C).

For a proof of Lemma 4.4, we refer to [5, Lemma 1].
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Proof of Theorem 4.1. The functors LνA and LνB are triangle self-equivalences of K b(A-proj) and 
K b(B-proj), respectively. Since A and B are derived equivalent, there is a triangle equivalence F :
K b(A-proj) → K b(B-proj) by Theorem 2.1. Thus there is the following diagram:

˜K b(A-proj) F̃

d

˜K b(B-proj)

d˜K b(A-proj)

d

F̃

L̃νA

˜K b(B-proj)

d

L̃νB

K0(A) F
K0(B)

K0(A)

LνA

F
K0(B) LνB

where the vertical squares in the diagram are commutative by Proposition 3.2, and the top square is 
commutative by Lemma 4.2. We shall show that the bottom square of homomorphisms of abelian groups is 
also commutative, that is, F LνA = LνB F .

Indeed, take α ∈ K0(A). By Lemma 3.1(2), there is a complex X• in K b(A-proj) such that d([X•]) = α. 
Then

F LνA(α) = F LνA(d([X•])) = FdL̃νA([X•]) = dF̃ L̃νA([X•])

= dL̃νBF̃ ([X•]) = LνBdF̃ ([X•]) = LνB Fd([X•]) = LνB F (α).

Hence the bottom square of the diagram is commutative.
Now, consider the Nakayama permutations σA and σB as elements in Σn, which are defined by νA(Pi) �

PσA(i) and νB(Qi) � QσB(i) for 1 ≤ i ≤ n. Let cσA
and cσB

be the permutation matrices of σA and σB, 
respectively. The Grothendieck groups K0(A) and K0(B) are free abelian groups generated by these [Pi]
and these [Qi], respectively. Moreover, by Proposition 3.2,

LνA([Pi]) = LνA(d([Pi])) = dL̃νA([Pi]) = d([νA(Pi)]) = d([PσA(i)]) = [PσA(i)].

Hence, with respect to the basis {[P1], · · · , [Pn]}, the group homomorphism LνA has the corresponding 
matrix cσA

. Similarly, with respect to the basis {[Q1], · · · , [Qn]}, the group homomorphism LνB has the 
corresponding matrix cσB

. Since F is a group isomorphism by Proposition 3.2, it corresponds to an invertible 
matrix c ∈ Mn(C) with respect to the basis {[P1], · · · , [Pn]} of K0(A) and the basis {[Q1], · · · , [Qn]} of 
K0(B). Due to F LνA = LνB F , there holds ccσA

= cσB
c. This means that cσA

and cσB
are similar in 

Mn(C). By Lemma 4.4, σA and σB are conjugate in Σn. �
5. Self-injective and weakly symmetric algebras over a field are closed under derived equivalences

Al-Nofayee and Rickard [2] proved that, if A and B are derived equivalent, finite-dimensional algebras 
over an algebraically closed field and if A is self-injective, then B is self-injective. This result seems then to 
be extended to finite-dimensional algebras over an arbitrary field by Rickard and Rouquier in [17, Corollary 
3.12], but we have difficulty to understand an argument in the proof there, see the words just above [17, 
Corollary 3.12]: “Assume now H<0(B) = 0. Then, viewed as an object of Db(B), ν(PS(S)) is concentrated 
in degree 0”.

In this section we give a different, but very elementary approach to Rickard-Rouquier’s result, and we 
show that a finite-dimensional algebra over an arbitrary field derived equivalent to a weakly symmetric 
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algebra is itself weakly symmetric. This is known for weakly symmetric algebras over an algebraically closed 
field in [3, Proposition 3.1].

An Artin ring R is called a Frobenius ring if RR is injective and the socle of RR is isomorphic to the top 
of RR.

Lemma 5.1. Let Λ be an Artin algebra over a Frobenius and commutative Artin ring R, and let E be a 
commutative R-algebra such that RE is a free R-module and EE is an injective E-module. Assume that 
M ∈ Λ-mod is a projective R-module. Then ΛM is injective if and only if so is the Λ ⊗RE-module M⊗RE.

Proof. Let −∗ = HomR(−, R) : Λ-mod → Λop-mod. Since R is a Frobenius ring, −∗ is a duality by [4, 
Theorem 3.3]. With M also M∗ is a finitely generated projective R-module, therefore HomR(M∗, R) ⊗R

X � HomR(M∗, X) as Λ-Γ-bimodules for any R-Γ-bimodule X with Γ a ring. Hence there are natural 
isomorphisms of functors:

HomΛ⊗RE(−,M ⊗R E) � HomΛ⊗RE(−, (M∗∗) ⊗R E)

� HomΛ⊗RE

(
−,HomR(M∗, E)

)
� HomE

(
M∗ ⊗Λ (−)E , E

)
(by adjoint isomorphism)

= HomE(−, E) ◦ (M∗ ⊗Λ −)

Thus if ΛM is injective, then it follows from the duality −∗ that M∗ is a projective right Λ-module, and 
therefore HomΛ⊗RE(−, M ⊗R E) is a composition of two exact functors. Thus HomΛ⊗RE(−, M ⊗R E) is 
itself an exact functor and M ⊗R E is an injective Λ ⊗R E-module.

Conversely, suppose that Λ⊗RE(M ⊗R E) is injective. By [6, Corollary IX.2.4a], the Λ-module M ⊗R E

is injective. Assume that {xi | i ∈ I} is an R-basis of E for some indexing set I. We take a fixed element 
0 ∈ I. Then E = x0R⊕

⊕
i∈I\0 xiR and

ΛM ⊗RE � M ⊗R

(
x0R⊕

⊕
i∈I\0

xiR

)
�

(
M ⊗R (x0R)

)
⊕
(
M ⊗R (

⊕
i∈I\0

xiR)
)

� M ⊕
(
M ⊗R (

⊕
i∈I\0

xiR)
)

as Λ-modules. Hence ΛM is injective. �
The following is an immediate consequence of Lemma 5.1.

Corollary 5.2. Let Λ be a finite-dimensional algebra over a field k, and let E/k be an extension of fields. 
Then Λ is self-injective if and only if so is the tensor product Λ ⊗k E of the k-algebras Λ and E.

The following result is observed by Rickard and Rouquier in [17].

Corollary 5.3. [17, Corollary 3.12] Suppose that A and B are finite-dimensional algebras over an arbitrary 
field such that they are derived equivalent. If A is self-injective, then so is B.

Proof. Assume that A and B are finite-dimensional algebras over a field k. Let k be an algebraic closure 
of k. Since A and B are derived equivalent, A ⊗k k and B ⊗k k are derived equivalent by [16, Theorem 
2.1]. Suppose that A is self-injective. By Corollary 5.2, A ⊗k k is self-injective. It is easy to see that A ⊗k k

and B ⊗k k are finite-dimensional algebras over k because dimk(A ⊗k k) = dimk(A). Now, the k-algebra 
B ⊗k k is self-injective by [2, Theorem 2.1] which states that finite-dimensional self-injective algebras over 
an algebraically closed field are preserved under derived equivalences. It then follows from Corollary 5.2
that B is a self-injective algebra. �
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Derived equivalences preserve finite-dimensional symmetric algebras over an arbitrary field [16, Corollary 
5.3]. We point out that this is true also for weakly symmetric algebras over an arbitrary field, and refer to 
[3] for weakly symmetric algebras over an algebraically closed field.

Corollary 5.4. Suppose that A and B are finite-dimensional algebras over an arbitrary field such that they 
are derived equivalent. If A is weakly symmetric, then so is B.

Proof. A finite-dimensional, self-injective algebra Λ is weakly symmetric if and only if the Nakayama per-
mutation of Λ is the identity map. This follows from the definition of the Nakayama functor νΛ.

Suppose that A and B are derived equivalent. Further, assume that A is weakly symmetric. Then A is 
self-injective. By Corollary 5.3, B is also self-injective. By assumption, A is weakly symmetric, that is, the 
Nakayama permutation of A is the identity map. So the Nakayama permutation of B is also the identity 
map by Theorem 4.1. Hence B is weakly symmetric. �
Corollary 5.5. Suppose that A, B, Λ and Γ are finite-dimensional algebras over a field k. Assume that A and 
Λ are derived equivalent and that B and Γ are derived equivalent.

(1) If both A and B are symmetric (or self-injective), then so is the tensor product algebra Λ ⊗k Γ.
(2) Assume that k is an algebraically closed field. If both A and B are weakly symmetric, then so is the 

tensor product algebra Λ ⊗k Γ.

Proof. It is known that if A and B are symmetric (or self-injective) k-algebras over an arbitrary field k, 
then so is the tensor product A ⊗k B. Furthermore, if A and B are weakly symmetric algebras over an 
algebraically closed k, then so is the tensor product A ⊗k B. This can be seen by the two facts:

(a) Over an algebraically closed field k, the indecomposable projective (A ⊗k B)-modules are of the form 
P ⊗k Q with P and Q indecomposable modules over A and B, respectively.

(b) Over an arbitrary field k, there holds νA⊗kB(P ⊗k Q) � νA(P ) ⊗k νB(Q) as (A ⊗k B)-modules for P
in A-proj and Q in B-proj.

As derived equivalences are preserved under taking tensor products (see [16]), we see that A ⊗k B and 
Λ ⊗k Γ are derived equivalent. Now, Corollary 5.5 follows from Remark 4.3 (or [16, Corollary 5.3]) and 
Corollaries 5.3-5.4. �

Let C be an additive category, D a full subcategory of C, and X an object in C. A morphism f : D → X

in C is called a right D-approximation of X if D ∈ D and the induced map HomC(D′, f) : HomC(D′, D) →
HomC(D′, X) is surjective for every object D′ ∈ D. A left D-approximation of X is defined dually.

A sequence

X
f−→ M

g−→ Y

in C is called a D-split sequence if M ∈ D, f is both a kernel of g and a left D-approximation of X, and g
is both a cokernel of f and a right D-approximation of Y .

For an object M in C, add (M) stands for the full subcategory of C consisting of all objects isomorphic 
to direct summands of direct sums of finitely many copies of M .

As a consequence of Corollary 5.3 and Corollary 5.4 together with [10, Theorem 3.5] and [16, Corollary 
5.3], we get the following.

Corollary 5.6. Let M be an object of an additive k-category C with k a field. If X → M ′ → Y is an add (M)-
split sequence in C, then EndC(X⊕M) is a self-injective (symmetric, weakly symmetric) algebra if and only 
if so is EndC(Y ⊕M).
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Let A be an Artin algebra. By a basic complex Y • in K b(A-proj), we mean that Y • is a direct sum 
of pairwise non-isomorphic indecomposable complexes in K b(A-proj), and therefore Y • has no nonzero 
contractible direct summands. A complex X• in K b(A-proj) is said to be radical if all differentials of X•

are radical homomorphisms.

Corollary 5.7. If A is a finite-dimensional, self-injective algebra over a field, then, for any basic tilting 
complex X•, LνA(X•) � X• in K b(A-proj).

Proof. Let X• be a basic tilting complex and B := EndK b(A-proj)(X•)op. Then B is a basic self-injective 
algebra by Corollary 5.3, and therefore B is a Frobenius algebra. By definition, B(DB) � BB as B-modules. 
Moreover, there is a triangle equivalence F : K b(B-proj) → K b(A-proj) such that F (BB) = X• (see [15]). 
Then it follows from Lemma 4.2 that

LνA(X•) = LνA(F (BB)) � FLνB(BB) = F (B(DB)) � F (BB) = X•

in K b(A-proj). �
Corollary 5.8. Suppose that A and B are finite-dimensional algebras over a field such that they are derived 
equivalent. If A is self-injective and its Nakayama permutation σA is transitive (that is, σA has only one 
orbit), then A and B are Morita equivalent.

Proof. Without loss of generality, we assume that B is basic. Then there is a basic tilting complex X•

in K b(A-proj) such that B � EndK b(A-proj)(X•)op by Theorem 2.1. Further, by [9, (a), p.112], we may 
assume that the complex X• is radical. Now it suffices to prove that X• is concentrated in a single degree 
because this will imply that X• is a projective generator, and therefore A and B are Morita equivalent.

Indeed, assume that X• is of the form (up to shift)

X• = · · · −→ 0 −→ X0 d0
X−→ X1 d1

X−→ · · · −→ Xm −→ 0 −→ · · ·

with X0 �= 0 �= Xm. Suppose m �= 0. Since the Nakayama permutation of A is cyclic, there is a number 
n such that each indecomposable projective A-module is isomorphic to a direct summand of the terms of ⊕

1�s�n LνsA(X•) in degrees 0 and m. By Corollary 5.7, 
⊕

1�s�n LνsA(X•) � (X•)⊕n in K b(A-proj). 
Since both 

⊕
1�s�n LνsA(X•) and (X•)⊕n are radical complexes, it follows from [9, (b), p.113] that ⊕

1�s�n LνsA(X•) � (X•)⊕n as complexes. Then each indecomposable projective A-module is isomorphic to 
a direct summand of (X0)⊕n and (Xm)⊕n. Thus HomK b(A-proj)((X•)⊕n, (X•)⊕n[m]) �= 0. This contradicts 
the fact that (X•)⊕n is a tilting complex. Hence m = 0 and X• has only one nonzero term. �
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