
Arch. Math.
c© 2023 Springer Nature Switzerland AG
https://doi.org/10.1007/s00013-023-01890-x Archiv der Mathematik

On Frobenius extensions of the centralizer matrix algebras
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Abstract. We establish a characterization of when a matrix algebra is a
Frobenius extension of its centralizer subalgebra.

Mathematics Subject Classification. 16S50.

Keywords. Centralizer algebras, Frobenius extension, Matrix algebra.

Let R be a (unitary associative) ring and C be a nonempty set of R. The
centralizer of C in R is a subring of R defined by

S(C,R) := {r ∈ R | rc = cr for all c ∈ C}.
If C = {c} is a singleton set, then S(c,R) := S({c}, R) is called a princi-
pal centralizer ring. We recommend [5,6] as basic references for combinatoric
characterizations, representation theory and homological properties of princi-
pal centralizer rings.

Let R and S be two rings. Recall that a bimodule SPR is a Frobenius
bimodule if both RP and PS are finitely generated projective modules, and
there is an R-S-bimodule isomorphism

HomS(P, S) ∼= HomRop(P,R).

An extension S ⊆ R of rings is called a Frobenius extension if SRR is a Frobe-
nius bimodule.

For a ring R and a positive integer n, Mn(R) denotes the full matrix ring
of all n × n matrices over R. It is shown in [6, Theorem 1.1.(1)] that if R is
a field, then S(c,Mn(R)) ⊆ Mn(R) is always a Frobenius extension for any
c ∈ Mn(R). In [5], Xi and Zhang considered the following general question.

Question 1 ([5, Question 4.10 (2)]). Let R be a ring and n be a positive integer.
For any c ∈ Mn(R), is Mn(R) always a Frobenius extension of S(c,Mn(R))?

In general, S(C,R) ⊆ R is not a Frobenius extension even when R is a
matrix algebra, see [5, Remark 3.13].
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This paper is devoted to give a characterization of when the matrix algebra
over a commutative ring is a Frobenius extension of its centralizer subalgebra.

We start with the following endomorphism ring theorem.

Proposition 2 ([2, Theorem 2.5 and 2.8]). Let P be a progenerator over a ring
R and S be a subring of EndR(P ). Then EndRop(P ) is a Frobenius extension
of S if and only if SPR is a Frobenius bimodule.

Theorem 3. Let R be a commutative ring, P be a progenerator over R, and
A = EndR(P ). Let C be an R-subalgebra of A. Then A is a Frobenius extension
of S(C,A) if and only if
(1) P is a generator as a left C-module, and
(2) C is a symmetric Frobenius extension of R (i.e., HomR(CCC , R) ∼= CCC).

Proof. Let S = S(C,A) and B = EndC(P ) ∼= Sop.
If C is a symmetric Frobenius R-algebra, then

HomC(P,C) ∼= HomC(P,HomR(C,R)) ∼= HomR(C ⊗C P,R) ∼= HomR(P,R)

as B-C-bimodule. Since CP is a generator, by a result of Morita (see [3,
Proposition 18.17]), P is a projective right B-module, and HomC(P,C) ∼=
HomBop(P,B) as B-C-bimodules. Since B ∼= Sop, SPR is a Frobenius bimod-
ule. By Proposition 2, A is a Frobenius extension of S.

Now assume that A is a Frobenius extension of S. By Proposition 2, SPR

is a Frobenius bimodule, so is RPB . Since V is a projective right B-module,
by a result of Morita, CP is a generator and C ∼= P ⊗B HomBop(P,B) ∼=
HomBop(P, P ) as C-C-bimodules. Then

HomR(C,R) ∼= HomR(P ⊗B HomBop (P,B), R)

∼= HomR(P ⊗B HomR(P,R), R) sinceRPB is a Frobenius bimodule

∼= HomBop(P,HomR(HomR(P,R), R))

∼= HomBop(P, P ) ∼= C

as C-C-bimodules. So C is a symmetric Frobenius R-algebra. �
Corollary 4. Let k be a field, and C be a commutative subalgebra of Mn(k).
Then Mn(k) is a Frobenius extension of S(C,Mn(k)) if and only if C is a
Frobenius algebra.

Proof. Notice that a commutative Frobenius algebra C is always symmetric,
and that any faithful C-module M is always a generator [1, Theorem 59.3].
Hence the conclusion follows immediately from Theorem 3. �

For any c ∈ Mn(k), since k[c] is a commutative Frobenius algebra (see [4,
Corollary 4.36]), Mn(k) is a Frobenius extension of S(c,Mn(k)) by Corollary
4.

If R is just a commutative ring but not a field, then there exists an example
such that Mn(R) is not a Frobenius extension of S(c,Mn(R)).

Example 5. Let R = k[X]/(X2), x = X + (X2), and c =
(

0 x
0 0

)
∈ M2(R).

Let C be the R-subalgebra of M2(R) which is generated by c. It is clear that
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C ∼= k[X,Y ]/(X2, Y 2,XY ) which is not a Frobenius algebra. Then M2(R) is
not a Frobenius extension of S(C,M2(R)) = S(c,M2(R)) by Theorem 3.
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